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Abstract

The Global and Externalized UC frameworks [Canetti-Dodis-Pass-Walfish, TCC 07] extend
the plain UC framework to additionally handle protocols that use a “global setup”, namely a
mechanism that is also used by entities outside the protocol. These frameworks have broad
applicability: Examples include public-key infrastructures, common reference strings, shared
synchronization mechanisms, global blockchains, or even abstractions such as the random
oracle. However, the need to work in a specialized framework has been a source of confusion,
incompatibility, and an impediment to broader use.

We show how security in the presence of a global setup can be captured within the plain UC
framework, thus significantly simplifying the treatment. This is done as follows:

o We extend UC-emulation to the case where both the emulating protocol 7 and the emulated
protocol ¢ make subroutine calls to protocol v that is accessible also outside 7w and ¢. As
usual, this notion considers only a single instance of ¢ or 7 (alongside 7).

e We extend the UC theorem to hold even with respect to the new notion of UC emulation.
That is, we show that if 7 UC-emulates ¢ in the presence of ~, then p?~™ UC-emulates p
for any protocol p, even when p uses v directly, and in addition calls many instances of ¢,
all of which use the same instance of 7. We prove this extension using the existing UC
theorem as a black box, thus further simplifying the treatment.

We also exemplify how our treatment can be used to streamline, within the plain UC model,
proofs of security of systems that involve global set-up, thus providing greater simplicity and
flexibility.
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1 Introduction

Modular security analysis of cryptographic protocols calls for an iterative process, where in each
iteration the analyst first partitions the given system into basic functional components, then
separately specifies the security properties of each component, then demonstrates how the security
of the overall system follows from the security of the components, and then proceeds to further
partition each component. The key attraction here is the potential ability to analyze the security
of each component once, in a simplified “in vitro” setting, and then re-use the asserted security
guarantees in the various contexts in which this component is used.

A number of analytical frameworks have been devised over the years with this goal in mind, e.g.
[MR91, Bea91, HM97, Can00, PW00, Can01, BPW04, Maull, KMT20, HS16, CKKR19]. These
frameworks allow representing protocols, tasks, and attacks, and also offer various composition
operations and associated security-preserving composition theorems that substantiate the above
analytical process. The overarching goal here is to have an analytical framework that is as expressive
as possible, and at the same time allows for a nimble and effective de-compositional analytical
process.

Modularity in these frameworks is obtained as follows. (We use here the terminology of the
UC framework [Can01], but so far the discussion applies to all these frameworks.) We first define
when a protocol m “emulates” another protocol ¢. Ideally, this definition should consider a setting
with only a single instance of m (or ¢) and no other protocols. A general composition theorem then
guarantees that if m emulates protocol ¢, then for any protocol p, that makes “subroutine calls” to
potentially multiple instances of ¢, the protocol p?~™ emulates p, where p®~7 is the protocol that
is essentially identical to p except that each subroutine call to an instance of ¢ is replaced with a
subroutine call to an instance of .

This composition theorem is indeed a powerful tool: It allows analyzing a protocol in a highly
simplified setting that involves only a single instance of the protocol and no other components,
and then deducing security in general multi-component systems. However, the general composition
theorem can only be applied when protocols 7 and ¢ do not share any “module” with the calling
protocol, p. That is, the theorem applies only when there is no module, or protocol, v, such that ~
is a subroutine of 7 or ¢, and at the same time « is used directly as a subroutine of p. Furthermore,
when p calls multiple instances of ¢, no module v can be a subroutine of two different instances of ¢.

This limitation has proven to be a considerable impediment when coming to analyze realistic
systems, and in particular when trying to de-compose such system to smaller components as
per the above methodology. Indeed, realistic systems often include some basic components that
require trust in external entities or are expensive to operate. It then makes sense to minimize
the number of such components and have them shared by as many other components as possible.
Examples for such shared components include public-key infrastructure, long-lived signing modules,
shared synchronization and timing mechanisms, common reference strings, and even more complex
constructs such as blockchains and public repositories.

Overcoming this limitation turns out to take quite different forms, depending on the underlying
model of computation. When the model of computation is static, namely the identities, programs, and
connectivity graph of computing elements are fixed throughout the computation, extending the basic
composition theorem to account for shared (or, “global”) subroutines is relatively straightforward.
(Examples include the restricted model of [Can20, Section 2|, as well as [BPW07, KMT20].) However,
restricting ourselves to a static model greatly limits the applicability of the framework, and more
importantly the power of the composition theorem. Indeed, static models are not conducive to
capturing prevalent situations where multiple instances of a simple protocol are invoked concurrently
and dynamically, and where all sessions share some global infrastructure; examples include secure



communication sessions, payment protocols, cryptocurrencies, automated contracts.

In order to be able to benefit from compositional analysis with shared modules even when
the analyzed protocols are dynamic in nature, new composition theorems and frameworks were
formulated, such as the Joint-State UC (JUC) theorem [CR03| and later the Generalized UC (GUC)
and Extended UC (EUC) models [CDPWO07].

However the GUC modeling is significantly more complex than the plain UC model. Furthermore,
the extended model needs to be used throughout the analysis, even in parts that are unrelated to the
global subroutine. In particular, working in the GUC model requires directly analyzing a protocol
in a setting where it runs alongside other protocols. This stands in contrast to the plain UC model
of protocol execution, which consists only of a single instance of the analyzed protocol, and no other
“moving parts.” Additionally, while the basic UC framework has been updated and expanded several
times in recent years, the GUC model has not been updated since its inception. Furthermore, the
claimed relationship between statements made in the EUC framework and statements made in the
GUC framework has some apparent inaccuracies.

Our contribution. We simplify the treatment of universal composition with global subroutines
for fully dynamic protocols. Specifically, We show how to capture GUC-emulation with respect
to global subroutines, and provide a theorem akin to the GUC theorem, all within the plain UC
modeling. This theorem, which we call the Universal Composition with Global Subroutines (UCGS)
theorem, allows for fully reaping all the (de-)compositional benefits of the GUC modeling, while
keeping the model simple, minimizing the formalism, and enabling smooth transition between
components.

We present our results in two steps. First, we present the modeling and theorem within the
restricted model of computation of [Can20, Section 2]. Indeed, here the GUC and UCGS modeling is
significantly less expressive - but it introduces the basic approach, and is almost trivial to formulate
and prove. Next we explain the challenges involved in applying this approach to the full-fledged UC
framework, and describe how we handle them. This is where most of the difficulty - and benefit - of
this work lies.

Let us first briefly recall UC security within that restricted model. The model postulates a static
system where the basic computing elements (called machines) send information to cach other via
fixed channels (or, ports). That is, machines have unique identities, and each machine has a set of
machine identities with which it can communicate. Within each machine, each channel is labeled
as either input or output. A system is a collection of machines where the communication sets are
globally consistent, namely if machine M can send information to machine M’ with channel labeled
input (resp., output) then the system contains a machine M’ that can send information labeled
output (resp., input) to M. In this case we say that M’ is a subroutine (resp., caller) of M.

A protocol is a set 7 of machines with consistent labeling as above, except that some machines
in m may have output channels to machines which are not part of 7. These channels are the external
channels of w. The machines in 7 that have external channels are called the top level machines of .

An execution of a protocol © with an environment machine Z and an adversary machine A is an
execution of the system that consists of (T U{Z, . A}), where the external channels of 7 are connected
to Z, and A is connected to all machines in the system via a channel (port) named backdoor. The
execution starts with an activation of Z and continues via a sequence of activations until Z halts
with some binary decision value. Let EXEC, 4,z denote the random variable describing the decision

! Indeed, there is at the moment no completely consistent composition theorem for EUC protocols. For instance,
the notion of a challenge protocol is not sufficiently well specified. Also the treatment of external identities is lacking.
This is discussed further in Appendix A.



bit of Z following an execution with = and A. We say that protocol m UC-emulates protocol ¢ if
for any polytime adversary A there exists a polytime adversary S such that for any polytime Z we
have EXECr 4,z =~ EXECy s z.

The universal composition operation in this model is a simple machine replacement operation:
Let p be a protocol, let ¢ be a subset of the machines in p that is a protocol in and of itself,
and let m be a protocol that has the same set of external identities as ¢, and where m and p \ ¢
are identity-disjoint, i.e. the identities of the machines in 7 are disjoint from the identities of the
machines in p \ ¢. Then the composed protocol p®~7 is defined as (p \ ¢) Un. The UC theorem
states that if 7 UC-emulates ¢, then for any p such that 7 and p \ ¢ are identity-disjoint we have
that p?~™ UC-emulates p. (Notice that here the UC operation replaces only a single “protocol
instance”. Indeed, here there is no natural concept of “multiple instances” of a protocol.)

In this restricted model, protocol v is a global subroutine of a protocol 7’ if 7y is a subroutine
of 7/, and at the same time some of the top level machines of 7/ are actually in . Said otherwise,
7/ consists of two parts, v and 7 = 7’ \ 7, where both 7 and ~ include machines that take inputs
directly from outside 7/, and in addition some machines in ~ take inputs also from machines in 7.
Observe that this structure allows « to be a subroutine also of protocols other than .

The Universal Composition with Global Subroutines (UCGS) theorem for such protocols takes
the following form: Let p, 7, ¢ and 7 be such that 7’ = 7 U~ and ¢/ = ¢ U~ are protocols where 7/
UC-emulates ¢’ (and in addition m and p \ ¢ are identity-disjoint). Then the protocol ((p \ ¢') U n’)
UC-emulates p. Observe, however, that in this model the UCGS theorem follows immediately from
the standard UC theorem: Indeed, (p\ ¢') U’ = (p\ #) U = p?=7. See illustration in Figure 1.
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Figure 1: UC with Global Subroutines (UCGS) in the restricted setting of [Can20, Section 2|:
Protocol v is a global subroutine of protocol 7’ if v takes input from 7 = 7’ \ v and also from outside
7', Then plain UC theorem already guarantees that if 7’ UC-realizes protocol ¢/, where ¢/ = ¢ U,
then for any p that calls ¢ and ~, the protocol ((p\ ¢) Un) = p?=™ UC-emulates p.

Extending the treatment to the full-fledged UC framework. While formulating UC with
global subroutines within the above basic model is indeed simple, it is also of limited applicability:
While it is in principle possible to use security in this model to infer security in systems that involve



multiple instances of the analyzed protocol, inference is still limited to static systems where all
identities and connectivity is fixed beforehand. The formalism breaks down when attempting to
express systems where connectivity is more dynamic in nature, as prevalent in reality. In order
to handle such situations, the full-fledged UC framework has a very different underlying model of
distributed computation, allowing machines to form communication patterns and generate other
machines in a dynamic way throughout the computation. Crucially, even in dynamic and evolving
systems, the framework allows delineating those sets of processes that make up “protocol instances,”
and then allows using single-instance-security of protocols to deduce security of the entire system.

To gain this level of expressiveness, the framework introduces a number of constructs. One such
construct is the introduction of the session identifier (SID) field, that allows identifying the machines
(processes) in a protocol instance. Specifically, an instance (or, session) of a protocol 7w with SID s,
at a given point during an execution of a system is the set of machines that have program 7 and SID
s. The extended session of m with SID s consists of the machines of this session, their subroutines,
and the transitive closure of all the machines that were created by the these subroutines during
the execution so far. Another added construct is the concept of subroutine respecting protocols.
Informally, protocol 7 is subroutine respecting if, in any extended session s of 7, the only machines,
that provide output to, or responds to inputs from, machines outside this extended instance, are the
actual “main” machines of this instance (namely the machines with code 7 and SID s). Machines in
the extended session, which are not the main machines, only take input from and provide output to
other machines of this extended instance.

While the SIDs and the restriction to subroutine respecting protocols are key to the ability of
the UC framework to model prevalent dynamic situations, they appear to get in the way of the
ability to prove UC with global subroutines. In particular, simply applying the UC theorem as in
the basic model is no longer possible. Indeed (referring to Figure 1), neither 7 nor ¢ are subroutine
respecting, and the constructs 7’ and ¢, which were legitimate protocols in the basic model, are not
legitimate protocols in the full-fledged model, since they don’t have the same program or SID. Note
that this is not just a technicality: In a dynamically evolving system with multiple instances of 7
and v there can be many possible ways of delineating protocol instances, and so the composition
theorem may not even be well-defined!

We get around this barrier by providing a mechanism for encapsulating an instance of ¢ and
one (or more) instances of v within a single “transparent envelope protocol” M[¢,~] such that a
single instance of M@, y] has the same effect as the union of the instance of ¢ and the instances of
~ used by this instance of ¢. To accomplish that, we extend the shell and body mechanism that’s
already used in the UC framework to enforce subroutine respecting behavior and to implement
the UC operation. A similar encapsulation is done for 7 and . Furthermore, the transformation
guarantees that both M[¢,~] and M[r,~] are now subroutine respecting, even though neither ¢ nor
7 are. This enables us to invoke the UC theorem (this time in the full-fledged UC model) to obtain
our main result:

Main Theorem (informal). Assume 7, ¢, are such that M[m,~] UC-emulates M[¢,~]. Then
for (essentially) any protocol p we have that p?=™ UC-emulates p.

Our result follows the spirit of the UC theorem: It allows using the security of a single instance
of m (in the presence of 7) to deduce security of a system that involves multiple instances of 7
(again, in the presence of 7). Said otherwise, the theorem allows dissecting a complex, dynamic,
multi-instance system into simple, individual components, analyze the security of a single instance of
a component, and deduce security of the overall system - even in the prevalent cases where multiple
(or even all) of the individual components are using the same global subroutines. See depiction in



Figure 2.

We prove the new composition theorem in a modular way. That is, our proof makes black-box
use of the plain UC theorem, thus avoiding the need to re-prove it from scratch, as in the GUC and
EUC modeling.

UC-emuylates
—

Figure 2: UC with global subroutines in the full-fledged UC framework: We encapsulate a single
instance of m plus one or more instances of v within a single instance of a protocol M[r,~] that
remains transparent to 7 and v and is in addition subroutine respecting. We then show that if
M[r,~] UC-emulates M[r, ¢] then the protocol p?~™ UC-emulates p for essentially any p — even
when p and all the instances of ¢ (resp., ) use the same global instances of ~.

Demonstrating the use of our treatment. We showcase our UCGS theorem in two settings.
A first setting is that of analyzing the security of signature-based authentication and key exchange
protocols in a setting where the signature module is global and in particular shared by multiple
instances of the authentication module, as well as by arbitrary other protocols. This setting was
studied in [CSV16] within the GUC framework. We demonstrate how our formalism and results
can be used to cast the treatment of [CSV16] within the plain UC framework. The resulting
treatment is clearer, simpler, and more general. For instance, in our treatment, the Generalized
Functionality Composition theorem from [CSV16] turns out to be a direct implication of the standard
UC composition theorem.

The other setting is that of composable analysis of blockchains, where assuming global subroutines
is essential and permeates all the works in the literature. In a nutshell, in [BMTZ17], a generic
ledger was described which, as proved there, is GUC-emulated by (a GUC version of) the Bitcoin
backbone protocol [GKL15] in the presence of a global clock functionality used to allow the parties
to remain synchronized. This ledger was, in turn, used within another protocol, also having access to
the global clock, in order to implement a cryptocurrency-style ledger, which, for example, prevents
double spending. [BMTZ17] then argues that using the GUC composition theorem one can replace,
in the latter construction, the generic ledger by the backbone protocol. As we demonstrate here,
such a generic replacement faces several issues due to inaccuracies in GUC. Instead, we show how
to apply our theorem to directly derive the above statement in the UC framework.



Composition with global subroutines in other general frameworks. Several other general
frameworks for defining security of protocols use a static machine model akin to the restricted variant
of the UC model described above, where machines communicate only via connections (“ports”) that
are fixed ahead of time, and the only way to compose systems is by way of connecting them using
a pre-defined set of ports. (Examples include the reactive simulatability of [PW00, BPWO07], the
IITM framework of Kiisters and Thuengertal [KMT20], the abstract cryptography of of Maurer
and Renner [MR11], the iUC framework of Camenisch et al. [CKKR19].) In these frameworks, the
single-instance global-state composition theorem immediately follows from plain secure composition,
in very much the same way as the single-instance UCGS theorem follows immediately from the
plain UC theorem in the restricted UC model (see Figure 1).

However, these frameworks do not provide mechanisms for modular analysis of systems where the
de-composition of the system to individual modules is determined dynamically during the course of
the computation. In particular, composition with global state in these frameworks does not address
this important case either. In contrast, as described above, this fully dynamic, multi-instance case is
the focus of this work. So far, this case has been addressed only in the GUC and EUC frameworks,
as well as in the work of Hofheinz and Shoup [HS16] which proposes an extension of their model to
accommodate certain specific ideal functionalities as distinguished machines.

We note that the IITM framework of Kiisters and Thuengertal [KMT20] (as well as the recent
iUC model [CKKR19] that builds on top of the IITM framework) does contain an additional
construct that allows machines to interact in a somewhat dynamically determined way: While each
machine has a fixed set of other machines that it can interact with, and protocols are defined as fixed
sets of machines that have globally consistent “communication sets”, the framework additionally
allows unboundedly many instances of each machine, where all instances have the same identity,
code, and “communication set”. Furthermore, if the communication sets of machines M, M’ allows
them to communicate, then each instance of M can communicate with each instance of M’. Indeed,
this additional feature enables the IITM framework to express systems where the communication is
arbitrarily dynamic.

However, this extra feature appears to fall short of enabling fully modular analysis of such
dynamic systems. Indeed, the IITTM framework still can only compose systems along the static,
a-priori fixed boundaries of machine ports. This means that systems that include multiple instances
of some protocol, where the boundaries of the individual instances are dynamically determined,
cannot be analyzed in a modular way — rather, the framework only allows for direct analysis of all
protocol instances at once, en bloc. This of course holds even in the presence of global subroutines.
Example of such systems include secure pairwise communication systems where the communicating
parties are determined dynamically, block-chain applications where different quorums of participants
join to make decisions at different times, etc. See e.g. [BCL*11, CSV16, GHM'17].

In contrast, the goal of this work is to allow de-composing such systems to individual instances,
deducing the security of the overall composite system from the security of an individual instance —
and carrying this through even when many (or all) instances use the same global subroutines (see
Figure 2).

A related work by Camenisch et al. [CDT19] introduces a new UC variant that they call multi-
protocol UC (MUC) and that allows the environment to instantiate multiple challenge protocols that
can interact with each other. It is an interesting future research direction to formulate this more
general type of UC execution following the approach taken in this work, i.e., to model it following
standard UC and making black-box use of the UC composition theorem to derive a composition
theorem for this type of protocol.



2 Overview of the UC Framework

This section gives a summary of the main concepts of the UC framework by Canetti [Can01]. Since
its introduction in 2001, the UC framework has undergone a sequence of versions, and this work
is based on the UC version of 2020 as specified in [Can20], which for compactness, we refer to as
UC 2020 in this work. While we assume some familiarity with the general concepts of universal
composition, we introduce the definitions used in this work for the sake of self-containment and,
along the way, point out some of the key differences of UC 2020 with the previous versions of the
framework. To give the reader an overview which notions she should be familiar with, and to provide
a glossary of terms for conveniently accessing them, we list the notions and results from UC 2020
that are restated in this section:

Def. 2.1: ITT configuration, extended identity Def. 2.6: Structured protocol

Def. 2.2: External-write request Def. 2.7: Subroutine-exposing protocol

Def. 2.3: Identity-bound environment Def. 2.9: UC Emulation

Def. 2.4: Compliant protocol Def. 2.10: UC Operator

Def. 2.5: Subroutine-respecting protocol Thm. 2.11: UC Composition Theorem
2.1 Basics

The UC framework aims to capture what it means for a protocol to securely carry out a task and to
guarantee this statement in any context in which the protocol is used. To achieve this, UC defines
the real process of executing a protocol in some environment and in the presence of an adversary.
Along the same lines, an ideal process is defined to capture what the protocol should achieve. A
security proof consists of showing that no (efficient) environment can distinguish the real process
and the ideal process. The core defining element of the ideal process is the ideal functionality
that specifies what guarantee each party obtains from the protocol. If a protocol execution is
indistinguishable from its ideal process, then we say that the protocol UC-emulates the ideal process.

Protocol and protocol instances. A protocol 7 is an algorithm for a distributed system and is
formalized as an interactive Turing machine (ITM). An I'TM has several tapes; the basic tapes are
the identity tape (read-only), an activation tape (to encode whether this ITM is active) and the
outgoing message tape that is used to store external-write requests (these are instructions to allow
a program to give input to another program).

An ITM has three externally writable tapes for holding information that is considered as input
from other programs. The input tape intuitively holds the information from the calling program
and the subroutine-output tape holds return values from called programs. Last but not least, there
is the backdoor tape which formalizes the interaction of an ITM, e.g., a functionality, with the
adversary. The backdoor tape is also used by the adversary to send corruption messages to parties
to take control over them. (In earlier versions of the UC framework the backdoor tapes were called
the communication tapes; however they functioned in the same way.)

While an ITM is a static object, UC defines the notion of an I'TM instance (denoted ITT), which
is defined as the pair M = (u,id), where p is the description of an ITM and id = (sid||pid) is its
identity, consisting of a session identifier sid and a party identifier pid. Each instance is associated
with a Turing machine configuration, which is as usual the contents of all of its tapes and positions
of its heads, and the state of the Turing machine. The identity tape of ITI M contains an encoding
of M = (u,id). An instance of a protocol p, also called a session (of the protocol), with respect



to a session identifier sid, is defined as a set of ITIs (u,id1), (i, id2),... with id; = sid||pid;. Each
such ITI in a given protocol instance is called a party or main party of that instance. The extended
instance s of protocol p is then the transitive closure of machines spawned as a consequence of
running f, i.e., each newly invoked ITI M becomes part of the extended instance if (a) M is a main
party of this instance, or (b) M is a subroutine of an ITT that is already in the extended instance,
or (¢) M was invoked by an ITI that is already a sub-party of this extended instance. An ITI is a
sub-party of an extended instance if it is in the extended instance but is not a main party of the
instance.?

Executions. An execution of a system of ITMs is formally a pair (I,C), where I is the initial
ITM and C' is the control function. The initial configuration of I (which has identity 0) is the first
ITT that gets activated by definition. Using the external-write mechanism, any ITI can pass input
to another ITI. (If the target I'TI does not yet exist, a new instance is spawned using the code and
identity specified in the request.) An external-write request specifies, amongst other elements, the
message as well as source and destination ITI, including whether this is a subroutine output or
an input to the destination ITI. The control function is responsible for writing the message (and
possibly the identity of the source ITI) on the respective tape of the destination ITI. The control
function also defines which ITI is activated next; typically, the destination ITI of the last processed
external write request is activated next. An execution consists of a sequence of activations. An
activated ITI can change its configuration according to the rules of its code. An activation ends by
issuing one external-write request (in case an ITI halts without issuing an external-write request,
the initial ITT is activated). The control function guarantees that all invoked ITIs have unique
values on their identity tapes, i.e., there are never two ITIs with identical pairs (p,id) with code p
and identity id.

Execution of a protocol, adversary, and corruption models. In the context of executing
a protocol, say 7, the above general idea of an execution is instantiated by having the initial ITI
be called the environment and defining a specific control function [Can20] to capture a meaningful
notion of execution of a protocol: the environment is allowed to only spawn one session of , i.e.,
only issue external-write requests that specify a destination ITI with code 7 and all having the
same session identifier. In UC 2020, one can further specify which identities an environment can
set as source identities in an input to the protocol. This mechanism can be used to model flexible
context restrictions. Note that prior to UC 2020, all source identities except for those that share
the session identifier with the test session 7 were allowed.

Additionally, the environment is allowed to invoke an adversary. Within this execution, the
adversary, typically denoted by \A, is simply another I'TI just with the special identity (L, L) on
its identity tape. The adversary can communicate with other ITIs by writing (only) on their
respective backdoor tapes. This tape can therefore be used to model security properties provided by
functionalities (e.g., a secure channel could leak the length of the message via the backdoor tape).
The backdoor tapes are also used to model party corruption: The adversary can, at any time, issue
special corruption messages in order to corrupt ITIs. The exact model of corruption—passive/active,
static/adaptive—is specified by how ITIs react to these messages on the backdoor tape. The plain
UC model does not prescribe or require any specific corruption model. It is instructive to keep in
mind the standard interpretation: when an ITI gets corrupted, it tells the adversary the contents
of all tapes, inform the adversary upon any input, and allow the adversary to decide on the next

2The extended session includes the transitive closure of the invocation relation when viewed as rooted at the main
ITTs of the instance and disregarding invocations made by the main ITIs via their subroutine output tapes.
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output (in the name of this ITI). This corruption dynamics corresponds to active and adaptive. By
default, ideal functionalities cannot be corrupted.

Compared to its previous versions, the UC model does not include a built-in form of communica-
tion. If one wants to model potentially insecure communication within a protocol, such as messages
sent between different protocol parties (in the sense that an adversary could interrupt, read, and
modify the message), then one should specify a channel functionality that the parties use for this
communication.

UC emulation. The concept of emulation induces a relation among protocols. Intuitively, a
protocol m UC-emulates another protocol ¢ if for any adversary A against 7w there is another
adversary S against ¢ such that no (efficient) environment can tell, from the observed input-output
behavior, whether it is running with m and A or with ¢ and S. This indicates that any attack on 7
can be translated to attacks on ¢, and thus, 7 does not admit more attacks than ¢.

The typical incarnation of this notion is when ¢ is an ideal protocol: More specifically, the
ideal protocol is formulated with respect to an ITM F which is called an ideal functionality and
captures “a trusted third party” implementing a protocol task. In the ideal process, the environment
Z interacts with an ideal-world adversary (simulator) S and a set of trivial, i.e., dummy ITIs
representing the protocol machines that only relay inputs to the functionality and forward the
outputs. These dummy ITIs are the “access points” of a calling program; they give the environment
the impression of interacting with structured protocol ITIs of a party and not an ideal functionality.
(The dummy protocol for ideal functionality F is denoted as IDEALx.) F has to specify all outputs
generated for each party, and the amount of information the ideal-world adversary learns (via
the backdoor tape) and what its active influence is via its interaction with F. Functionalities
directly handle the corruption requests by an adversary via the backdoor tape in UC 2020 (and can
adjust their behavior based on this information). Note that one always assumes that a corruption
mechanism exposes towards the environment enough information about who is corrupted to enforce
that the real and ideal world adversaries corrupt, for example, the same parties—identified by the
party identifier. If a protocol m UC emulates the ideal process with F, then one says that 7 securely
realizes F.

2.2 Technical Definitions

We now state the formal definitions from [Can20] that are used in this work.

2.2.1 Executions

We state the definition of ITT configuration and the extended identity of an ITI.

Definition 2.1 (ITT configuration, extended identity). Let M denote an instance of an I'TM g,
i.e., the pair M = (u,id), where id = sid||pid is an identity string consisting of two parts. A Turing
machine configuration of u is a configuration of an ITI M if the contents of the identity tape
contains M—which is henceforth referred to as the extended identity eid = M. Let further an
activation of an ITI M refer to a sequence of configurations of M, i.e., state transitions that follow
the rules described by p starting from an active configuration of M until an inactive configuration
is reached in which case the I'TI waits for the next activation.

ITIs can write to each other’s writable tapes via external-write requests that are interpreted by
the control function that “delivers” the message.
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Definition 2.2 (External-write request). An external-write request is a message written by an ITI
onto its outgoing message tape. It must have the format (f,eidgest, ¢, 7, €idsre, m). In this vector,
eiddest = (Tdest, Siddest || Pidqest) 1S the destination ITI with target code m and target session identifier
sidgest, and ¢ € {input, subroutine-output, backdoor} is the tape that message m shall be written to.
If the reveal-sender flag r is set, then eidg, is written on t as well. Finally, the forced-write mode
f = 1 indicates that if ITI eidges; does not exist yet, then one is created in its initial configuration.

The UC control function requires that the field eidg, in the external write request match the
contents of the identity tape of the I'TT creating the request, unless the initial I'TI with identity 0 is
creating the request.

When the environment Z provides input to an I'TI in the system, it can choose an arbitrary
value for the source identifier eidy. it uses in the external-write request. We refer to the source
identifiers chosen by the environment in a particular execution as external identities. The latest
revision of the UC paper [Can20] specifies a method to restrict the external identities that the
environment is allowed to choose in an execution, based on a predicate £. Predicate £ is evaluated
on the complete view of the environment, namely all inputs and outputs the environment provides
to or obtains from other ITIs in the system. One natural predicate is the one that disallows Z to
use as external identity the extended identity of any ITI that it provides input to in the system.
Other choices of predicates may be helpful in various scenarios.

Of course, the more relaxed the predicate £, the more general the security statement. More
restrictive predicates in turn lead to more restrictions on the contexts in which the protocols proved
secure with respect to those predicates can be executed.

Definition 2.3 (Identity-bounded environment). Let £ be a predicate on the view of an environment.
A &-identity-bounded environment is an environment Z that only claims external identities eid (as
the source of an input to an I'TT eid’) such that the predicate £ on the view of each execution of Z
evaluates to 1. £ is then also called the identity bound.

The definition of run-time changed significantly in recent versions of the UC framework (see
[Can20], Section 3.2, for the most recent definition). Each message sent between ITIs contains an
explicit field called import, which encodes a natural number. The number of computation steps
performed by an ITI must be, at any point in time, bounded by a polynomial in the accumulated
import received by the I'TI minus the accumulated import sent by this ITI. In a system of I'TMs
that is parameterized by k € IN, each I'TI only starts executing after it received import at least k.

2.2.2 Protocol Properties

The composition theorem makes certain preconditions on the protocol it applies to. We start by
introducing some nomenclature from [Can20]. In a given execution that includes two ITIs M and
M' ITI M’ is a subroutine of M if M has passed input to M’ or M’ passed subroutine output to M.
ITI M’ is a subsidiary of M if it is a subroutine of M or a subroutine of another subsidiary of M.

For the composition theorem to work, the parent protocol (often called p) must adhere to certain
restrictions. For instance, p should not call both = and ¢ with the same session identifier: this
would clearly make p and p®~™ distinguishable, since the latter protocol would then only invoke one
instance of 7 (this follows from the uniqueness requirement on extended identities in an execution
of ITIs). Also, if there exists an identity-bound & on the environment when proving a protocol, say
7 secure, then any protocol using m must use it in the way allowed by £.

The following condition, which in this form was introduced in UC 2020, formalizes a restriction
to prevent such cases together with restrictions that ensure that the input-output communication
between different ITIs is trustworthy:
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Definition 2.4 (Compliant protocols [Can20]). Let p, m, and ¢ be protocols, and let £ be a
predicate on extended identities. Protocol p is called (7, ¢, &)—compliant if the following holds in
any execution with a (potentially &-identity-bounded) environment:

1. All external-writes made by parties and sub-parties of p, where the target tape is the input
tape, use the forced-write mode as in Definition 2.2. Similarly, all messages received on
the subroutine-output tapes of these ITIs are expected to have reveal-sender-id flag on; other
subroutine-outputs are rejected.

2. No two external-write instructions, out of all external-write instructions made by the members
of an extended instance of p, where one instruction has target code m, and the other instruction
has target code ¢, have the same target session identifier.

3. The extended identities of all the ITIs in any extended instance of p (in any execution) that
pass inputs to ITIs with code either 7 or ¢ satisfy the predicate ¢ (based on the view of the
interaction with those subroutines with code either 7 or ¢).

Composition has a further precondition that is referred to as subroutine respecting. On a high
level, this condition means that all sub-protocols of a protocol 7 receive all their inputs and provide
all their outputs through . This condition is a natural requirement for composition: if sub-protocols
of m interacted with protocols outside of 7, then the ideal protocol ¢ that is to be realized by 7
would have to resemble the same structure. Subroutine respecting is the requirement that these
inner workings of the protocols remain hidden from the outside.

Definition 2.5 (Subroutine respecting [Can20]). Protocol 7 is subroutine respecting if each session
s of m, occurring within an execution of any protocol with any environment satisfies the following
four requirements, in any execution of any protocol p with any adversary and environment (as per
the definition of protocol execution; it is stressed that these requirements must be satisfied even
when session s of 7 is a subroutine of p, and in particular when the execution involves ITIs which
are not members of that extended session s):

1. The sub-parties of session s reject all inputs passed from an I'TI which is not already a main
party or subsidiary of session s (note that rejecting a message means that the recipient ITI
returns to its state prior to receiving the message and ends the activation without sending any
message; see [Can20, Section 3.1.2]).

2. The main parties and sub-parties of session s reject all incoming subroutine outputs passed
from an ITI which is not already a main party or subsidiary of session s.

3. No sub-party of session s passes subroutine output to an existing I'TI that is not already a
main party or sub-party of session s.

4. No main party or sub-party of session s passes input to an existing I'TI that is not already a
main party or sub-party of session s.

A protocol p making calls to a subroutine 7 can be subroutine respecting even if 7 is not.
Consider a case where p provides input to subroutines of 7, which means that 7 is not subroutine
respecting. At the same time, protocol 7 and all of its subroutines ignore all inputs from protocols
outside of the session of p and also do not provide subroutine output to any protocol outside of p.

It is convenient to consider protocols that consist of two parts: a shell part that takes care of
model functionality such as corruption or subroutine replacement, and a body part that encodes the
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actual cryptographic protocol. One advantage of this modeling is that the body is not cluttered
with model formalism such as addressing and communication mechanisms. Furthermore, different
corruption models can be formalized by using different shells, while leaving the body with the core
protocol untouched. It is important to note that the shell mechanism lies at the core of many
important definitions in [Can20] and that a protocol body can again consist of a protocol (consisting
of shell and body) which yields a sequence of shells (with a clear distinction into inner shells and
outer shells). This hierarchy of shells is quite vital to many definitions in UC (for example, the shell
introduced by the UC operator is outer to the corruption shell and hence the corruption model does
not interfere with the subroutine replacement mechanism). We refer the reader to [Can20, Section
5.1] for further details.
A protocol that follows this structure is called a structured protocol.

Definition 2.6 (Structured protocol [Can20]). A structured protocol® consists of a shell and a body.
The shell can read and modify the state of the body, but the body does not have access to the state
of the shell. An activation of a structured protocol starts by running the shell, which may (or may
not) execute the body sub-process. In case the body executes, it keeps executing until it reaches a
special “end of activation state”, at which point the shell resumes executing. The body may prepare
all the information necessary for executing an external-write operation, but it may not execute this
operation. Only the shell executes external-write instructions.

In the model of execution described above, parties of a protocol can generate subroutines with
arbitrary codes and identities. Upon the first external-write request to an extended identity, the I'TI
with that identity is created and will start following its instructions. One effect of this modeling
is that the adversary is not necessarily aware of all subroutines that exist in the system as, for
instance, session identities may be chosen at random. This is usually undesired, as it renders those
subroutines effectively incorruptible. This undesired effect is countered in UC 2020 by the definition
of subroutine exposing, in which specific ITIs that are readable by the adversary hold a directory of
all existing members of an extended instance. We give here a direct constructive definition of this
property as it is sufficient to follow this work and refer to [Can20] for a deeper discussion on the
subroutine-exposure property.

Definition 2.7 (Exposure mechanism of subroutines). A protocol 7 implements the subroutine
exposing mechanism if for each instance s of 7 there exists a special directory I'TI with identity
tape (7, s||T) that contains the list of the extended identities of all parties and sub-parties of this
(extended) instance of 7, and returns this list to the adversary upon request. More precisely, this
list is a sequence of eid’s ordered according to invocation. Each I'TI that is a main- or sub-party of
this instance notifies the directory I'TI of its extended identity immediately upon its invocation,
and also of each newly invoked ITI before invoking it. When notified by an ITI M that it has been
invoked, the directory I'TI adds M to its database if M is a main party of session s, or if some ITI
already in the database invoked it.

2.2.3 Emulation and Composition

We are now ready to state the UC security definition—which is protocol emulation—the composition
operation, and finally the composition theorem. The security notion targets computational security
and is based on the computational indistinguishability of random variables.

The output of the execution of protocol 7 in presence of adversary A and in environment Z
is the output of Z, which we assume to be a binary value v € {0,1}. We denote this output by

3This property was called compliant in previous versions of UC.
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EXECr 4, z(k, z,7) where k is the security parameter, z € {0, 1}* is the input to the environment, and
randomness 7 for the entire experiment. Let EXEC, 4 z(k, z) denote the random variable obtained by
choosing the randomness r uniformly at random and evaluating EXECy 4 z(k,2,7). Let EXECy 4 2
denote the ensemble {EXECy 4.z (k, 2) }reN,ze{0,1}+ -

Definition 2.8. Denote by X = {X(k, 2) }pew 2c(o,1}+ and Y = {Y(k, 2) } ke 2ef0,1}+ two distribu-
tion ensembles over {0,1}. We say that X and Y are (computationally) indistinguishable if for any
¢,d € IN there exists a kg € IN such that |[Pr[X(k,z) =1] — Pr[Y(k,2) =1]| < k=€ for all k& > ko
and all z € J,<4a{0,1}". We use the shorthand notation X ~ ) to denote two indistinguishable
ensembles. -

UC-realization. The UC security definition is stated in terms of emulation of protocols. Intu-
itively, a protocol m emulates another protocol ¢ if 7 is at least as secure as ¢. This is formalized
following the simulation paradigm [GMRS85], by showing that for every adversary A against 7 there
exists an ideal adversary (or simulator) S against ¢ that emulates A’s attack. The additional
strength of UC comes from the requirement that the statement hold true in presence of every
environment Z.

Definition 2.9. Let n € IN, Let m and ¢ be subroutine respecting protocols. We say that w
UC-emulates ¢ if for any (efficient) adversary A there exists an (efficient) ideal-world adversary (the
simulator) S such that for every (efficient and balanced?) environment Z it holds that EXEC, 4 z ~
EXECy s z. If Z is {-identity-bounded then we say m UC-emulates ¢ with respect to &-identity-
bounded environments.

Composition. Let m be a protocol that presumably UC-emulates another protocol ¢. The
composition operation in UC is then defined as replacing, in a given protocol p, all subroutine calls
to protocols with code ¢ by subroutine calls to protocols with code m. The underlying idea here is
that one designs protocol p with an idealized, simple and abstract protocol ¢ in mind, and later
realizes ¢ with the concrete protocol 7.

We first state the definition of the UC operator that formalizes the operation on protocols
described above [Can20].

Definition 2.10 (UC Operator). The UC-operator is a transformation denoted by
p7T :=UC(p, 7, )

and maps a (context) protocol p, which presumably makes subroutine calls to ¢, to a (context)
protocol p?~™ that makes subroutine calls (i.e., provides input) to 7 whenever p (or a sub-party of
an extended instance of p) makes a call to ¢ (more precisely, gives input to any top-level instance of
¢ in an extended instance of p). For the technical definition, we refer to [Can20, Section 6.1].

It is important to note that the UC-operator replaces ¢ by 7 in a code-oblivious fashion, meaning
that the transformed protocol has only a different input-output behavior due to the fact that 7= and ¢
might have a different behavior, and not by the fact that the source eid on the subroutine-output tape
denotes 7 instead of ¢. The technical definition in [Can20] basically rewrites the shell instructions
of the context protocol to ensure a proper replacement (and is overall similar to the approach taken
in this paper).

4An environment is balanced if it, intuitively speaking, allocates to the adversary at least as much runtime as it
allocates to the honest parties. As this notion is not crucial for this work, we refer to [Can20] for details.
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We are finally ready to state the composition theorem. It basically states that if protocol 7
emulates protocol ¢, then protocol p? =™ emulates protocol p, for any protocol p fulfilling certain
preconditions.

Theorem 2.11 (UC Theorem). Let p, m, ¢ be protocols and let & be a predicate on extended
identities, such that p is (m, ¢,§)-compliant, both ¢ and 7 are subroutine exposing and subroutine
respecting, and © UC-emulates ¢ with respect to E-identity-bounded environments. Then p?=™
UC-emulates protocol p.

3 Formulating and proving the UCGS theorem

In this section, we formulate and prove the main result of this work. In Section 3.1 we present the
transformation that takes protocols m and ~ and constructs a single, transparent encapsulation
protocol M[m, 7] that behaves like a single instance of 7 along with one (or more) instances of a “global
subroutine protocol” v. We formulate UC emulation with Global Subroutines in Section 3.2, state
and provethe Universal Composition theorem with Global Subroutines composition in Section 3.3
and conclude with remarks in Section 3.4.

3.1 Treating multiple protocols as a single protocol

We start by defining the transformation that takes two protocols 7w and « and combines them into a
single protocol p = M[r, ], such that one instance of y1 behaves like one instance of 7 and one or
more instances of v, and where the instances of v take inputs both from the instance of © within g,
and from outside u. We refer to u as the management protocol.

The goal of the construction is to ensure that an instance of protocol u presents the exact same
behavior as one instance of 7 alongside one (or more) instances of 7, while at the same time making
sure that, from the point of view of the basic UC framework, p remains a subroutine-respecting
protocol. This will mean that incoming communication to p specifies a session ID for pu, plus a
session identifier for either the instance of 7 or an instance of 4. The input is then forwarded
internally either to the instance of m or to the appropriate instance of . Outgoing communication
is handled similarly. Note that it is important to make sure that the (virtual) instances of 7= and ~
receive communication that is formatted exactly as it would be, were it the case that = and v are
independent machines. (This is needed so that the behavior of 7 and v will remain unchanged.)
See depiction in Figure 3.

In order to allow black-box use of the UC composition theorem in the proof of our new composition
theorem, we need to make sure that an instance of ;4 mimics the execution of a single instance of
7 (alongside one or more instances of ). That is, © must make sure that the various machines
of an instance of © maintain a single, consistent virtual instance of w. To maintain the necessary
information about the execution, we allow the management protocol p to make use of a directory
ITI similar to the one used to ensure the subroutine-exposing property. That is, we embed a special
ITI called execution graph directory in the operation of the management protocol (and shells) that
acts as a central accumulator of knowledge.’

We now detail the execution graph directory for the structured protocol p. The following generic
shell mechanism—implemented by an additional, outermost shell of p and all its subroutines—makes

SWhile there are alternative solutions such as an extra shell propagating information about the execution graph, the
directory appears to be a technically simple solution for our transformation. Our transformation is a proof technique,
and as such the transformed protocol is not meant to be deployed in reality (where one may argue that such a central
entity is unrealistic).
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Figure 3: The three main components of our management protocol p = M, ]
handling access to 7 and ~y, both equipped with shells sh[-]. For sh[x], different
types of incoming and outgoing messages are indicated in gray.

sure that this outermost shell layer maintains information about the induced execution graph as
well as additional auxiliary information extracted from the underlying protocol (i.e. the body in the
view of this additional shell). Let pide,pr be an exclusive identifier, i.e., an identifier that never
appears in any execution of the base protocol. Assume the session identifier is sid.

e The ITT with special identifier (1, sid||pideypir) never activates its body and the shell processes
three types of requests: first, when activated with input (REGISTER, auz) from an ITI M, it
stores the entry (M, auz) in an ordered list (initially empty) unless M is already recorded in
the list. Second, when activated with input (INVOKE, M’, auz) from an already registered ITI
M and ITT M’ is not yet registered, then record (M — M'). Also, record (M’', aux) unless
M’ is already registered. The return value to M in both cases is the trivial output ok. The
party allows any registered I'TI M to query the stored list and ignores any message on the
backdoor tape.

e For any other I'TI running in this instance, when activated for the first time, the shell sends
(REGISTER, auz) to ITI (u,sid||pidegpir) where aux can denote any auxiliary information.
(Note that reveal-sender id and forced-write flags are set). When receiving ok it resumes
processing its first activation by activating its body (which in structured protocols might be
another shell oblivious of the above interaction).

e For any other ITI running in this instance, when the shell processes an external write request
from its body to an ITI M, it sends (INVOKE, M, auz) to ITI (pu,sid||pidegpir) where auz can
denote any auxiliary information, before resuming with processing the external write request.

By exclusivity of pide,pir, the shell operates in an oblivious fashion from the point of view of the
body. Since the shell only talks to pide,prg, this in turn is even oblivious to the environment and
the adversary.

In fact, this is not entirely obvious: while no interaction via the backdoor tape indeed means
that the adversary can neither corrupt nor extract information from the directory, another corrupted
ITT in the system might get information from pidgprg via a normal query and give the result to the
adversary. This, however, is not possible: in UC, model-related instructions are organized in shell
layers, where each shell is unaware of the outer shells, and treats the inner shells as part of the body.
Now, the shell layer describing the model-related instructions to communicate with directories is
outside of the shell implementing the corruption layer and therefore, the corruption layer is unaware
of the directory. For more details, see [Can20, Section 5.1]. We note that this observation is already
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crucial for the standard UC composition theorem and not novel for our work, because corruptions
must not invalidate the subroutine-exposing property of a protocol and hence corruptions should
not interfere with the subroutine-exposing shell (or the shell introduced by the UC operator).

To conclude, the above mechanism is used by M[r,v] and its subsidiaries sh[-] in the following
way: first, whenever a new machine with code M[-] is about to spawn an instance of 7, it registers
with the directory and defines as auxiliary input the extended identity of the instance of 7 it is going
to spawn (and can also halt if it sees that another session already started). Second, the machines
running code sh[-] use the INVOKE calls and put as auxiliary input the information eidge — €idqest
of the virtual ITIs of sh[-] to additionally store the invocation graph of the main instance of 7 which
in particular allows to infer what the (virtual) main instance of 7 is (see below for why this is
important). In particular, all ITIs in the extended session of M|, | use the same execution graph
directory ITI. To see that we get all properties we need from this, we refer to Proposition 3.4.

An alternative approach. It is worth to point out that introducing such an additional ideal
party is not an additional framework assumption. Equivalently, one can reach agreement by using
a distributed protocol among the shells of the transformation to mimic this party. Recall that
in structured protocols, shell instructions are used to model technical model instructions and
therefore this notion can be leveraged to “emulate” the execution graph directory ITT (i.e., invoke
the distributed protocol instead of the execution graph directory I'TI).

We now give a formal definition of M[m,v]. The construction uses the body and shell formalism
from [Can20].

The management protocol. In a nutshell, M[r,v] is a standard UC protocol that works as
follows:

e M[m, | exposes its subroutine structure to a directory ITI (which the environment can access,
see Definition 2.7) and its invocation graph to an additional execution graph directory ITI as
discussed above to ensure that M[r,~] is subroutine respecting.

e M[m,~| can be invoked with an arbitrary session identifier. It allows the environment to
invoke exactly one (top-level) instance of m with a freely chosen session identifier (note that
addressing this “challenge protocol” is done in an abstract manner by using an identifier MAIN).
Additionally, arbitrarily many instances of v (again with arbitrary session identifiers) can be
invoked (again the addressing is done in an abstract fashion using identifier GLOBAL).

e When an ITI running M[r,~], say with party ID pid, provides input to 7 in session s, then
it wraps this input and invokes the ITI with code sh[x], party id pid, and a session ID that
encodes s. This I'TT unwraps the received content and provides it to the main party pid of
7 in session s. A similar mechanism happens between any two machines to ensure that this
instance of 7 is oblivious of this overlay.

e The machines running sh(n] (resp. sh[y]) detect, using the execution graph directory, when
a “main party of 7 (resp. v)” provides subroutine output to an external party, and can then
provide this output to the correct main party M[m,~] which delivers it to the environment.
Note that when M[r,~] delivers such outputs to the environment, it only reveals the party ID
and session ID, and whether the source was the global subroutine (using identifier GLOBAL) or
the single invoked instance (using identifier MAIN). Recall that the UC control function plays
a similar role. We note in passing that M[m, 7] can ensure that at most one session of 7 is
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invoked by the concept of the execution graph directory and block any attempt to create a
new session of 7 if one exists already.

e M[m, | refuses to communicate with the adversary, i.e., it does not communicate over the
backdoor tape and is hence also incorruptible.

In order to map this to a program, we quickly recall the message passing mechanism in UC. UC
uses the external-write mechanism via which a machine can instruct the control function to invoke
a machine with a given input on one of three tapes. Messages are either written on the input tape
(e.g., when a party calls a subsidiary), or on the subroutine-output tape (e.g., when a subsidiary
returns an output to a caller), or on the backdoor tape (which only models the interaction with
the adversary). Therefore, our transformation has to take care to route all the messages of the
“wrapped” instance of 7 to the correct machines by taking care of inputs, subroutine outputs, and
backdoor messages.

Code of Transformation. The formal description of the management protocol M, ], which is
parameterized by two ITMs 7w and ~, as well as the code of the associated shell of the transformation,
denoted sh[code] that takes as parameters the ITM code and is a structured protocol that runs code
as its body, are provided in Appendix B.

Runtime considerations as a standard UC protocol. The protocols generated by M[:] are
standard UC protocols executed by an environment Z. The run-time of M[-] and sh[-] deserves
further discussion. Recall that in a parameterized system, each ITI only starts executing after
receiving import at least k& — where & is the security parameter. That means when M[-] is first
invoked it requires import k to before executing, the execution graph directory requires additional
import &, and the sub-protocol sh[r] or sh[v] to which the message is directed also requires import
k before executing. We define M[-] such that it begins executing only after receiving import at least
3k; this ensures that the initial operation has sufficient import to complete. The further operations
performed by M[-] and the shell sh of 7 and ~ are only administrative such as copying and routing
messages between 1TIs, which means that they can be accounted for by slightly increasing the
involved polynomials.

An alternative management protocol. We note that defining M[r,~] so that the main parties
of an instance of M|, ] consist of ITIs that run exclusively shell code, and where the ITIs that
have body 7 or 7 are subroutines of these main parties of M[m, ], is a design choice that was
made mainly for clarity of exposition and to clearly delineate the various parts of the management
protocol. Alternatively, one can define a different management protocol, M[r,~]’, where the code of
the main ITIs of M[rm, ] becomes part of the shell code of the ITIs whose body runs either 7 or
7. That is, the main parties of an instance of M(m,v|" will be the union of the main parties of the
relevant top-level instance of 7, along with the main parties of the relevant top-level instances of .
One advantage of this formalism is that there are no additional management-only ITIs, and so the
runtime issues mentioned in the previous paragraph do not come up. In addition, we believe that
the restriction to regular setups can be relaxed. This is an interesting future direction.

3.2 UC Emulation With Global Subroutines

We now define a variant of UC emulation that intends to capture, within the plain UC model,
the notion of EUC-emulation from [CDPWO07]. Namely, we say what it means for a protocol 7 to
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UC-emulate another protocol ¢, in the case where either 7 or ¢ or both are using another protocol ~y
as subroutine, where v can be accessed as subroutine of other protocols, i.e., is “global” or “shared”.

Definition 3.1 (UC emulation with global subroutines). Let 7, ¢ and - be protocols. We say that
7 £-UC-emulates ¢ in the presence of «y if protocol M[r, ] £&-UC-emulates protocol M[g, v].

Note that in the above, £ can be any identity bound as of standard UC. Recall that it is a tool
to get more fine-grained security statements and technically restricts the environment to interact
with the protocol instances m and v in a certain way.

Our definition of UC-emulation in the presence of a global subroutine is very general, and we
need further terminology in preparation for the conditions under which the composition theorem
applies. Consider the case where we want to analyze security of multiple instances of a protocol 7
which individually are subroutine respecting except that they all call a global subroutine ~. In the
terminology of [CDPWOT7], such protocols are called ~y-subroutine respecting. We generalize their
definition and allow for more than one instance of ~.

Definition 3.2 (y-subroutine respecting). A protocol 7 is called ~y-subroutine respecting if the
four conditions of Definition 2.5required from any (sub-)party of some instance of 7 are relaxed as
follows:

e the conditions do not apply to those sub-parties of instance s that also belong to some extended
session s’ of protocol 7;

e (sub-)parties of s may pass input to machines that belong to some extended session s’ of protocol
7, even if those machines are not yet part of the extended instance of s (cf. Definition 2.5,
item 4).

While the definition above allows 7 to violate subroutine respecting through subroutines with
a code that is also used by 7, we are only interested in protocols m where subsidiaries only
communicate with outside protocols if they belong to the subroutine ~. To this end, we will only
consider y-subroutine-respecting protocols m where + is itself subroutine respecting.

For our composition theorem to hold, we must impose a light technical condition on the shared
subroutine. The condition states that (a) a shared subroutine does not spawn new ITIs by providing
subroutine output to them, and (b) the shared subroutine may not invoke the outside protocol as a
subroutine. On a high level, this prevents that the shared subroutine itself spawns new higher-level
sessions. On a technical level, the composition theorem relies on a hybrid argument that would not
work if the shared subroutine spawns, for example, new sessions for which it is not decidable in a
dynamic fashion whether or not they actually belong to the main instance of the protocol under
consideration. To our knowledge, all global setups used in the literature satisfy these restrictions.
For example, a global CRS does not output the reference string to parties who never asked for it, a
global ledger requires parties to register before participating in the protocol, and a global clock only
tells the time on demand. An example of a hypothetical functionality that violates this condition is
a global channel functionality that outputs a message to a receiver whose extended identity can be
freely chosen by the sender.

Definition 3.3 (Regular setup). Let ¢,~ be protocols. We say that « is a ¢-reqular setup if, in any
execution, the main parties of an instance of v do not invoke a new ITI of ¢ via a message destined
for the subroutine output tape, and do not have an I'TI with code ¢ as subsidiary.

As will become clear in Proposition 3.4, when considering a protocol ¢ that is y-subroutine
respecting, where v itself is ¢-regular and subroutine respecting, then we naturally have a clean
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interaction between ¢ and “a global subroutine” « without any unexpected artifacts. For example,
~v does not initiate new I'TIs with code ¢, neither as new protocol sessions “outside of v” nor as
proper subroutines of vy itself.

We next state the useful proposition that our transformation is by default subroutine respecting
and preserves the behavior of the involved protocols in the following sense: Let 7, be as before,
and let « be a protocol that invokes at most one session of 7. Let & be the protocol that executes «
as a virtual ITI within a shell. Let sidy; be an otherwise unused SID.

e When a provides input m to ITI eidgest With code code € {m,~}, then & instead provides
input ((m, eidgyc), €idjjes) to M[m, ] with SID sidy;, where eids. is the extended identity of the
virtual instance of « and eid)j.; equals eidqes; except that its code-field code’ is set to MAIN if
code = 7 and to GLOBAL if code = v (and results in the same subroutine being invoked as «
does).

e When @ obtains subroutine output ((m, eidg.), eidgest) from M[m,~] with SID sidy;, where
eidgest i the extended identity of the virtual instance of «, then & emulates subroutine output
m from eidgc to «, overwriting code MAIN of eidg.. with 7 and code GLOBAL with ~.

Proposition 3.4 (M[r,~] is subroutine respecting and preserves behavior). Let v be subroutine
respecting and m be y-subroutine respecting. Then the protocol M[m,~| is subroutine respecting. In
addition, let v be w-regular, and let o be a protocol that invokes at most one subroutine with code .
Denote by a the transformed protocol described above. Then the transcript established by the set of
virtual IT1s in an execution of some environment with & is identical to the transcript established by
the set of ITIs induced by the environment that has the same random tape but interacts with o.

Proof. The subroutine-respecting property follows due to employing the special I'TI eidegpir =
(codeyy, sidm |[pidegpir) per instance where the parties that are currently part of this instance jointly
store the current view of the entire execution graph (which includes both the real ITIs and the
virtual ITIs run as the body of the transformation shells sh[]). By definition, shells ignore messages
not coming from other shells (or the main management protocol) of the same instance, and eidegprir
maintains and provides this information.

For the second part of the proposition, we first observe that the virtual ITIs running as part of
the extended instance of M[m,~] never give subroutine output or receive input from a virtual ITI
that is not within the extended instance of m or «: this follows from the fact that 7 is y-subroutine
respecting and ~y is 7w-regular and subroutine respecting itself. More detailed, from the perspective
of m, the only violation of subroutine respecting could happen via calls to v. However, v never
creates rogue ITIs via subroutine output due to its regularity, and all ITIs it spawns never give any
output or accept input to/from ITIs outside the instance of v. Consequently, the shells sh[] (in
which the virtual ITIs are executed) never have to ignore inputs and always produce the outputs
they should, thereby not interfering with the messages passed from any virtual ITI to any other.
Finally, the outputs produced towards the real o and the virtual o within a are the same, by the
translation made by a. To conclude the statement, we observe that the overhead introduced by
the management protocol is small and can be accounted for by managing its import as explained
above, i.e., the management protocol has enough import to emulate a virtual instance of 7 (and the
invocations of ). O

3.3 Universal Composition with Global Subroutines

We are now ready to state a composition theorem that lets us replace protocol instances in the
presence of a global setup. See Figure 4 for a graphical depiction.
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Figure 4: A graphical depiction of our composition theorem in the presence of global
setups. Top: m UC-emulates ¢ (Definition 3.1). Bottom: Replacement of ¢ by 7 in
some context protocol p. See Theorem 3.5 for the assumptions made on p, 7 and ~y for
replacement to go through. Empty boxes indicate subroutines of p that are not 7w or ¢.

Theorem 3.5 (Universal Composition with Global Subroutines — UCGS Theorem). Let p, ¢, m,y
be subroutine-exposing protocols, where v is a ¢-reqular setup and subroutine respecting, ¢, T are
y-subroutine respecting and p is (7, ¢, €)-compliant and (w, M[code, ], §)-compliant for code € {¢p, 7}.
Assume m &-UC-emulates ¢ in the presence of v, then p®=™ UC-emulates p.

In line with the run-time discussion for M[-], protocol p only starts executing after receiving
import at least 4k. This ensures that, during the execution, the modified version of p (which we
refer to as 9 in the proof) has a sufficient run-time budget to accommodate the creation of the
additional ITI M|code, 7], its execution graph directory, as well as an additional directory introduced
by the proof technique in this theorem.

Proof. Let n € IN be an upper bound on the number of top-level instances of ¢ that are invoked in
an extended session of p. For ease of presentation, we assume that p calls only one instance of ~,
and later show how to lift this assumption.

The basic structure of the proof is as follows. We modify each invocation of ¢ within p separately.
For each i = 1,...,n, we first rewrite p such that the management protocol M[¢,~] is invoked
instead of the i-th ¢. Then, we replace ¢ with 7 within this instance of the management protocol.
Afterwards, we remove the management protocol instance again and let p instead call 7 directly.
All modifications are oblivious from the perspective of the environment.

We now formalize what it means to rewrite p by introducing or removing the management
protocol. We define a transformation MOP(p, 7, ¢, , (code,)) that introduces the management
protocol, where p,m, ¢, are protocols, code € {7, ¢} and ¢ € [n]. Similar to the standard UC
operator, MOP(p, 7, ¢, 7, (code, i)) adds a shell® to its input protocol p. This shell acts basically as

6 As with the UC operator shell, the shell of MOP() is incorruptible and thus all instructions are executed regardless
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follows (and will be made precise later):

1. The operator adds shell instructions that rewrite the first ¢« — 1 invocations of ¢ to invocations
of 7 in an oblivious way (similar to the UC operator, but simplified and tailored to our case).

2. Replace the i-th invocation of ¢ with M[code,~].

3. Route all calls to 7, except for the ones coming from the i-th invocation of ¢, through
M[code, 7].

4. Ensure that all members of the extended session of p, which are not in the extended session of
M[code, 7], are equipped with the above instructions.

The last step ensures that, after applying MOP, there is still only one instance of v in the extended
instance of p. See Figure 5 for a graphical depiction of MOP applied to a protocol p invoking three
instances of ¢.

More formally, the shell of protocol ¥ :== MOP(p, 7, ¢,~, (code, 7)) works as follows. Protocol
¥ maintains a variable idy,in that is used to store the identity of the i-th invocation of ¢ and
is initially set to (L||L), and chooses a session identifier sidy; that will be used for the instance
MJcode, ] introduced by the operation. Protocol ¥ also manages an execution graph directory
eidegpir = (¥, 5||pidegpir ), Where s is the session identifier of 9. The execution graph directory is
similar to that of M[] described in Section 3.1, but it is additionally used to count the top-level
instances of ¢ that are replaced by 7 or M|code, 7] to ensure that ¥ and its subsidiaries operate on
consistent information. Whenever p requests to create an I'TI with code ¢ in a new session sid that
is a top-level instance (which can be checked by looking at the execution graph in the directory),
the shell obtains the list of registered I'TIs and looks for the maximum session number ¢ stored as
part of the auxiliary input euz within the directory (default value 0 in case it is not defined yet). It
then increases this counter by 1 and stores it alongside the new edge of the invocation graph. Any
ITI with code different from ¢, or instances of ¢ that are not replaced, are simply recorded in the
execution graph without this additional value. This way, eid,,pr can be used to obtain the number
of already replaced top-level instances of ¢ in the extended instance of ¥ (and deduce whether and
how the next one must be replaced). Now, the shell of ¢ acts as follows:

e Switching invocations of ¢ to either m or M[.]: Whenever p or a subsidiary of p instructs
to pass input z to an ITT (¢, sid||pid) running a top-level instance of ¢ (after registering this
new invocation with eidggDIR), coming from source ITT eidg., the shell obtains the list of
registered ITIs from eidg,pig. If there is any entry ((¢,sid||pid),7), it sets idmai = (sid||pid).
Further,

— if an ITT (m,sid||-) or (¢,sid||-) already exists in the extended instance of ¥ (i.e., it is
contained in the directory ITI (p,sid,||T)), then pass = to (m,sid||pid) or (¢,sid||pid)
//call to instance already switched to w, to a subroutine of p with code m, or to an
instance ¢ that must not be replaced.

— if idmain = (sid||pid) is defined and the ITI (M[code, 7], sidy||pid) has been created already,
then send ((x, eidgc), (MAIN,sid||pid)) to this ITT //call to i-th instance

— if none of two former cases hit, then we make the following case distinction: First, let ¢
be the number with which the new top-level instance of ¢ was invoked.

of the corruption status of an ITI. Looking ahead, this guarantees that even instances of ¢ or 7 invoked by corrupted
machines will be counted by the shell of .
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* if ¢ < i, ¥ passes input z to the ITI (m,sid||pid) instead of (¢, sid||pid) // swilches
another instance of ¢ to w

% if ¢ = 4, then pass input ((x, eidg), (MAIN,sid||pid)) to the ITI with extended identity
(M[code, 7], sidy||pid). //introduce M|

x if ¢ > i,  is delivered to the ITI (¢, sid||pid). //done with replacements

e Routing access through M[]:

— Inputs to +v: Whenever any sub-party in the extended instance of p with extended
identity eidg. passes input = to an ITI eidgess = (7,sid||pid) (where either this ITI
does not exist yet or it is, by assumption, part of the only instance of v listed in the
directory (p,sid,||T)), ¢ sets &’ := ((z, eidg), (GLOBAL, sid||pid)). ¥ now sends input 2’
to (M[code, 7], sidy||pid).

— Outputs of v, m or ¢: Whenever the shell of an I'TI of the extended instance of p which
is not in the extended instance of M[] with session identifier sidy; receives a subroutine
output (z, eidg.), parse z = (2', eidl,.). If eid],, = (GLOBAL,sid,||pid) for some sid,, then

start the body with (2, (v, sid,||pid)). Else, if eid],, = (MAIN, sidcode||pid) for some sidcode,

src

then start the body with (2/, (code, sidcoge||pid)-

e Replacing outputs of other replaced instances: Whenever the shell of an I'TI of the
extended instance of p which is not in the extended instance of M[] with session identifier
sidyr receives a subroutine output v of a top-level instance sid of 7 invoked to replace the jth
session of ¢ (j < i), then start the body p with input v and declare source-code ¢ instead of 7.

e Exposing subroutine structure: ¥ exposes its subroutine structure via a directory I'TI
(9, sidy||T).

e Pass instructions to new members of the extended instance: whenever an ITI within
the extended instance of ¥ invokes an I'TI M that is not a member of the extended instance
of M[] with session identifier sidy; (i.e., either M[] or subsidiary thereof), then all above
instructions are added to the shell code of M.

Recall the standard UC operator Definition 2.10 denoted UC(p, , ¢) that replaces all top-level
instances of ¢ by 7 in the extended instance of p. We define the following more concrete version as a
black-box extension: let p(®?) be the protocol p where first i top-level instances of ¢ are singled-out by
a special identifier and considered the only top-level instances of ¢.” Now by overloading the operator,
define UC(p, , ¢,7) := UC(p'??), 7, $) as the operator that replaces exactly the first 7 invocations of
¢ with 7. By definition, it holds that UC(p, 7, ¢,0) = p and UC(p, 7, $,n) = UC(p, 7, ¢) = p®~~.
Note that the main task of this operator, namely the oblivious replacement of subroutines, is already
contained within MOP() and we thus refrain from stating it explicitly. We are now ready to state

"This again can easily be accomplished by introducing a directory ITI as before and having the shell of p use it to
identify the respective sessions. Note that this is again only needed in the proof.
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Figure 5: A graphical depiction of the workings of transformation MOP() applied to a
protocol p. Top left: Protocol p invoking 3 instances of ¢ as subroutines and one instance
of the global subroutine . The grey box indicates the first invocation of ¢, the dashed
one the second. White boxes are instances of other subroutines, possibly also making calls
to the single instance of 4. Bottom right: The protocol MOP(p, 7, ¢, 7, (¢, 2))

the steps of the proof more formally. By a = b we denote a UC-emulating b.

Lemma 3.6

MOP(/% , (Z)v Y ((b? 1)

)
Lemma 3.7
MOP(p,m,¢,7.(m, 1)) = MOP(p,m,6,7,(,1))
MOP(p77T7¢777(7T71))
Lemma 3.6

)
MOp(p, 7, ¢,7,(4,2)) =  UC(p,m, 1)

P

Lemma 3.8

UC(p, 7, 0,1

Lemma 3.8

UC(p,m, é,n) =  MOP(p,m,é,7, (m,n))

> transitive
> transitive p(b_”rip

We now state three lemmas which are enough to argue validity of the above chain of results. In a
nutshell, they let us argue that each of the required steps — introducing M|, switching the protocol
within M[], removing M[] again — cannot be noticed by the distinguishing environment except with
negligible probability.

Lemma 3.6 (Z is oblivious of introducing M[¢,v]). Let ¢, 7,, p be as in Theorem 3.5 such that p
is (¢, M[¢, 7], &)-compliant. Then fori=1,...,n —1 it holds that

MOP(ﬂ’ 7T7 QS? Py? ((b?Z + 1)) t UC(p7 7T7 ¢7 Z) °

Proof. Let 9 :== MOP(p, 7, ®,7, (¢,i+ 1)). We construct a simulator Sy as in Figure 6. We stress
that we do not have to simulate execution graph directories, that is, all ITIs with PID pide,pig,
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e Adjusting the subroutine structure:

— When A queries a directory (¢,sidg||T) with code ¢, Sy requests the list of extended
identities (eid, eidg, ...) from (UC(p,m, ¢, 1), sidchan|| T)* If the first extended identity
in this list having code ¢ does not have session identifier sidg, i.e., sidy is not the first
instance with code ¢ invoked in the extended instance of UC(p, 7, ¢,i), Sy relays 2’s
query to (¢,sidg||T) and hands the answer back to Z. Else, Sy sends query to (¢, sidg||T)
and receives back the list of registered ITIs in (¢, sidg|| T). It modifies this list by inserting
extended identities with code M[¢, ], each with the sid sidy; (freshly chosen once), before
every (¢,sidg,-). Additionally, Sy; rewrites all other extended identities in the list from
(code, sid||pid) to (sh[code], (sid, sidy)||pid). It then outputs the modified list to Z.

— Whenever Z sends query to a directory ITI (¥, sidehan||T), Sm sends query to the
directory ITT (UC(p,m, ¢,4),sidehanl|| T). If it gets a list of registered ITIs containing
already instances of ¢, then it modifies the first instance in the list in the way described
above and sends the list to Z. To figure out which entries of the list belong to the
instance of ¢, Sy asks the corresponding directory ITT (¢, || T).

— In all other cases, Sy relays messages query from A to the corresponding directory ITTs
and relays the answers back to A.

e Backdoor messages: Sy blocks backdoor messages destined for an ITI with code being
either M[] or sh[]. When Z instructs Sy to send a message (m, (code,sid||pid)) to an ITI
(sh[code’], (sid’, sidpp)||pid"), Sn discards if (code’, sid’||pid’) # (code, sid||pid). Otherwise, Sy
sends message m to the backdoor tape of (code,sid||pid). If it receives an answer M, it sends
(M, (sh[code], sid||pid)) to A.

e Other messages: Sy relays all other messages between A and Z.

“Note that Sy learns the session identifier sidchan of the challenge session when first contacted by Z, since, in the
UC framework, Z is restricted to use only one session identifier.

Figure 6: The simulator Sy running with Z and protocol UC(p, 7w, ¢,4) (Lemma 3.6).

since the adversary is oblivious of these machines. Thus, we only have to simulate all standard UC
directories.

Regarding backdoor messages, for any I'TI that exists in UC(p, 7, ¢, ) and as virtual ITI in ¢, Sy
mimics the behavior of M[] and the shells sh[] perfectly. For shells, discarding malformed messages
and relaying well-formed ones is already sufficient. For M[], Sy does not accept any backdoor
messages just as M[] does. Regarding simulation of directories, Sy introduces the management
protocol in the same instance as ¥, since 9, just as UC(p, 7, ¢, i), substitutes the first 7 invocations
of ¢ with invocations of m and thus the “next” instance in ¥ corresponds to the first instance
running ¢ in UC(p, w, ¢,4). Thus, an execution of UC(p, 7, ¢, 1) with Sy is indistinguishable from
an execution with A and 9 if, for all ITIs in the extended instance of the first invocation of subsidiary
¢ in UC(p, 7, ¢,1), there exists a corresponding virtual ITI in the extended instance of M[¢, 7] as
subsidiary of ¥ which was invoked by the same input, and vice versa.

Claim 1. For any possible input sequence provided by Z, an ITI (code,sid||pid) is in the extended
instance of UC(p,m, ¢,1) if

1. it is also contained (as a virtual ITI with shell MOP) in the extended instance of ¥, or
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2. ITI (sh[code], (sid, sidy)||pid) is in the extended instance of 9.

Moreover, the input sequences of all corresponding ITIs are the same, where two (virtual) ITIs are
corresponding if they either have the same (virtual) extended identity.

Proof. The claim follows since the addition of shell MOP does not change the input for the (virtual)
ITIs that are subsidiaries of ¥, and the introduction of M[] is oblivious by Proposition 3.4. To
conclude the claim, it remains to verify that the UC operator UC(p, 7, ¢), which is a code-modifier
operation, is well-defined even for protocols /¢ that are y-subroutine respecting. This, however, is
obvious for ¢-regular and subroutine-respecting protocols v and hence the operator has the declared
effect stated in Definition 2.10. O]

This concludes the proof of Lemma 3.6. O

Lemma 3.7 (Replacement within M[]). Let ¢, w,7, p be as in Theorem 3.5 such that p is (¢, M[m, 7], £)-
compliant. Then

Ur := MOP(p, 7, 6,7, (7,4)) = MOP(p, 7, ¢, 7, (¢,1)) =: ¥y

Proof. As explained before, our goal is to invoke the UC composition theorem (stated as Theorem 2.11
in this work) to prove the UCGS Theorem, and the time is now. So let pir := M[m, 7], 1y := M[o,7].
We would like to replace the (only) occurrence of g in ¥4 by fir, obtaining YheTHT — 9. Since
by the precondition it holds that 7 emulates ¢ in the presence of « which, by definition, translates
to pix = pg, the UC composition theorem would allow for the desired replacement if the following
three conditions hold:

1. The context protocol ¥y is (fir, f14,&)-compliant (cf. Definition 2.4)
2. ir, pty are subroutine exposing (cf. Definition 2.7)
3. lir, pty are subroutine respecting (cf. Definition 2.5).

It can be directly read from the code of M[] that the protocol is subroutine exposing, so (2) holds.
To complete the proof of the lemma, it is thus enough to show (1) and (3).

For (1), let (1.1)-(1.4) denote the required properties according to Definition 2.7. (1.1) (all parties
and subsidiaries of ¥4 that give input use force-write mode) holds since p is (7, ¢, £)-compliant and
M[] does not tamper with the force-write flag. (1.2) (no same session identifier for yr and pg) holds
by selection of sidy; in ¥4. (1.3) (all subroutine outputs received by parties or subsidiaries of ¥
reveal the sender’s identity) again holds because of compliance of p. However, note that M| does
indeed tamper with the reveal-sender-id flag by putting either MAIN or GLOBAL as code of subroutine
output messages. (1.4) (all ITIs in extended instance of ¥4 having subroutine i, or p14 are allowed
by &) holds again because of compliance of p, since these ITIs are just a subset of the ITIs having
subroutines with code 7 or ¢ in p.

Finally, (3) follows from Lemma Proposition 3.4. O

Lemma 3.8 (Z is oblivious of removing M[m,~]). Let ¢, 7,7, p be as in Theorem 3.5 such that p is
(¢, 7, &)-compliant. Then fori=1,...,n —1 it holds thal

UC(p,?T, ¢vl) = MOP(pvﬂ-» ¢,’7, (77»2)) .
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Proof. The proof proceeds analogous to the proof of Lemma 3.6, only that this time the simulator
removes the additional layer introduced by M[] and its shells. A simplifying difference is that the
simulator does not have to look at the order of instance invocations in the directory to find the
correct instance to modify, but instead just looks for the single instance with code MO#P. The rest
of the simulation can be straightforwardly adopted and the indistinguishability arguments are the
same as in Lemma 3.6. O

Finally, the proof can be easily adopted in the presence of many instances of 7. Note that
this scenario is already captured by M[] which allows to invoke several instances of . Thus, even
protocols ¢ using more than one instance of 7 do not lead to M[] violating subroutine respecting,
and the same arguments can be applied. This concludes the proof of the UCGS theorem. O

We point out that our composition proof makes it explicit that no changes to the concrete
interaction between ¢ (resp. 7) and the instances of the global subroutine 7 are needed. This is
important point to consider, since often all instances of ¢ (resp.7w) within p would share the same
instance (or a fixed number of instances) of v and hence our theorem shows that this behavior is
preserved. Such specific cases (where a bounded number of instances of v can be assumed to exist)
follow as a special case of our treatment.

3.4 On existing Global UC Statements and Proofs

In general, statements found in the literature work in the externalized UC (EUC) subspace of GUC.
Although we argue in Appendix A that EUC as a framework has some subtle issues, most known
protocols do look fine in a meaningful context (which should be made explicit). First, most global
setups in the literature are easily seen to be regular, i.e., only provide output to the requesting I'TI
(examples include a clock, random oracle, ledger functionality). Next, proofs typically assume a sort
of domain separation between claimed identities by the environment and real ITIs in the system.
(Note that this is not given by the model: even if the environment cannot claim external identities
in the same session as the test session, the test session does not have to exist when first accessing
the global setup.) In UC 2020 [Can20], one can define £ as a condition on allowed identities in the
system. Two typical restrictions are found in the literature such as in [BMTZ17]:

(a) & is satisfied if (i) any eid of an ITI in the system is not declared by the environment as an
external source eid in a request to . This is typically a minimal requirement, as otherwise,
whatever the global setup provides to a protocol, this information could be first claimed by
the environment (for the entire test session) even before spawning the test session. This is
problematic unless we have very simple setups such as a common-reference string or a plain
global random oracle [BGK*18].

(b) As a further restriction, one could enforce that v provides per session guarantees: ¢ is satisfied
if whenever (additionally to above) eid = (u, sid||pid) and eid’ = (/, sid||pid’) are the source
extended identities in an input to «y, then p = g’ has to hold. This technically does not allow
any other instance to access the shared information, but still the information is formally
accessible by the environment claiming an external identity of this session. This model is useful
when certain elements of the setup need to be programmed by a simulator, while keeping the
overall model of execution close to standard UC.

If proofs conducted in EUC have the above restrictions assumed when proving indistinguishability
of the simulation, then it is conceivable that these proofs are transferable into our new model to
satisfy precondition of Theorem 3.5 and thus composition is again established. We discuss such
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“EUC statements” in the next section. In particular, Section 4.2 recovers an EUC example in detail,
where we also show how our model can capture various forms of “shared subroutines” ranging from
subroutines fully accessible by the environment to subroutines shared only by the challenge protocol
(which captures joint-state UC (JUC)).

4 Applications of the UCGS Theorem

We provide two examples to showcase how to prove emulation statements in the UC model in
the presence of global subroutines and to verify that the preconditions of the UCGS Theorem are
satisfied. The first example is global public-key infrastructure (specifically, adapting the treatment
of [CSV16]). The second example is a global clock (adapting the treatment of [BMTZ17]).

These examples bring forth two additional technical aspects of universal composition with global
subroutines within the UC framework: The first has to do with the mechanics of having one ideal
functionality call another ideal functionality as a subroutine, and the second has to do with the need
to find a judicious way to define the external-identities predicate & for the management protocol so
as to make the best use of the UCGS theorem. (Indeed, these aspects of UC with global subroutines
have been lacking in the treatment of [CDPWO07].)

Section 4.1 introduces the formalism for having an ideal functionality call another ideal function-
ality as subroutine. Section 4.2 presents the application to modeling global public-key infrastructure.
Section 4.3 presents the application to modeling global clock in the context of blockchains.

4.1 Interaction between Ideal Functionality and Shared Subroutine

The UCGS theorem essentially state that if protocol 7 UC-emulates protocol ¢ in the presence of
7, and both 7 and ¢ are y-subroutine respecting, then p?~™ UC-emulates p for any p. A natural
use-case of the theorem is when the emulated protocol, ¢, is an ideal protocol for some ideal
functionality F, and + is an ideal protocol for some ideal functionality G. This means that to make
meaningful use of the theorem, F should make subroutine calls to -y, which in this case means that
F should call dummy parties for G.

A simplistic way to do that would be to simply have F directly call (and thus create) dummy
parties for G. However, in this case, by the definition of dummy parties as per the UC framework
[Can20], the PID of the created dummy party will be the identity of F. This may be overly restrictive,
since the emulating protocol, 7 might have other ITIs call G. So, instead, we define a mechanism
whereby F does not directly call a dummy party for G. Instead, F creates a new “intermediate
dummy party,” which serves as a relay of inputs and outputs between F and the dummy party of G.
The identity (specifically the PID) of the intermediate dummy party is determined (by F) so as to
enable realization of ¢ by protocols m where the PIDs of the parties that use G are meaningful for
the overall security. (This mechanism can be viewed as a way to make rigorous informal statements
such as “provide input « to G on behalf of [sender] S” [CSV16].) Details follow.

Definition 4.1 (Intermediary dummy party). Let F be an ideal functionality and « some protocol.
We define the operation of an intermediary dummy party with code IMx,, as below. Let (p, s) be
the party and session id indicated on the identity tape, and let CIM (code of intermediary) be an
exclusive syntactic delimiter ending the description of the code IMx .

e When activated with input (CALL, (s, p'),v) from an ITI with code F and sid s: the party
only acts if the content of the identity tape matches (-||CIM,-||-) and the reveal-sender-id flag
is set. Then, provide input v to the ITT eid; := (v, §'||p’) (with reveal-sender identity and
forced-write flags set).
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e Upon receiving a value v’ on the subroutine output from an ITI with identity eid = (v, s'||p’)
(for some s',p’): the party only acts if the content of the identity tape matches (-||CIM,-||-)
and the reveal-sender-id flag is set. Then, provide subroutine output (RETURN, (s, p’),v’) to
the ITI with identity eid; := (F, s||L) (with reveal-sender identity and forced-write flags set).

e Any other message on any tape that is not matching to some case above is ignored.

A functionality F can now contain general instructions of the form “provide input z on behalf
of P in session s to an instance of v running in session s’ and PID P’” and is understood as the
following operation: the ITI running code F in some session sid provides input (CALL, (s', P'), z) to
intermediary dummy party with identity (s, P) and code IMr,. Now, P (in session s) will appear
as the PID of the ITI invoking . F can process the answers when obtaining the returned values
from the intermediary dummy party on its subroutine output tape.

Often it is clear from the context—and standard for EUC-like statements—that only one session
of v with a predefined session identifier sid is expected to be running, and that each main party
(with PID) P of the challenge session s can participate in the shared process v (i.e. by invoking ITIT
with identity (8, P) and code ). In such cases, the statement “output = on behalf of P to v” by
an ideal functionality F in (challenge) session s is understood as providing input (CALL, (3, P), x)
to the intermediary dummy party with identity (s, P) (and code IMr ) with exactly the desired
effect that the ITI with code ~, PID P and sid sid is invoked, and where P in session s appears as
the official caller.

Clearly, the intermediary is a modeling tool that no environment should tamper with. Hence,
for the sake of clarity, when we speak of UC realization of an ideal functionality interacting with a
global subroutine, we mean the following:

Definition 4.2 (Realization with interaction with shared subroutine). We say that 7 UC-realizes F
in the presence of v w.r.t. £&-identity bounded environments, if Definition 3.1 holds for the particular
choice of ¢ := IDEALF and with respect to the identity bound ¢ that equals £ augmented with the
restriction that no eid specified by the environment (source or destination) can specify code with
delimiter CIM.

The intermediary dummy party provides a guaranteed interaction channel and formalizes what
was implicitly assumed in prior work when a functionality interacts with, e.g., a global setup such
as an certification functionality in the name of a party.

4.2 Example 1: Authentication with Global Certification

Authentication with respect to a global certification functionality (often called PKI) aims at
formalizing the fact that if a certified verification key for a digital signature is globally available,
then any signature generated with respect to that key can be verified globally, by anyone, even
if the signature was generated in the context of a specific protocol. This in particular mean that
protocols that employ certified digital signatures might have global “side effects”. For example,
if Alice signs a message in a particular session, using a signing key for which there is a globally
accessible certificate, then anyone can cross-check that it was Alice who signed the message. In
particular, this might mean that Alice can incur further liabilities.

[CSV16] provides a treatment of this situation within the GUC framework of [CDPW07]|. We
use the UCGS theorem provide an alternative (and arguably simpler) treatment within the plain
UC framework.
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The global certification functionality. The shared subroutine is v = IDEALgpid - Note that
cert

the functionality is parameterized by a party identity pid. We assume that the functionality is
following the standard PID-wise corruption mechanism as specified in [Can20]: this means that the
functionality manages corruption messages for party identifiers that are main parties in the execution
of IDEALx, and marks those party identifiers as corrupted for which it received a corruption message
on the backdoor tape.?

—‘ Functionality P9 }

Variable: pk « 1.

Adversarial key registration: Upon receiving (REGISTER, sid, v) on the backdoor tape and if pid is
corrupted and pk = L then update pk < v.

Signature Generation: Upon receiving a value (SIGN,sid, m) from a party with PID pid (via input to
the dummy party with SID sid and PID pid):

(a) If this is the first request then do:
1. If pid is not corrupted then output (KEYGEN) to the adversary (via the backdoor tape).

Upon receiving (VERIFICATION KEY,v) from the adversary (on the backdoor tape) and if
pid is still not corrupted store pk <— v internally.

2. Check at this point that pk # L. If not, then ignore the request.
(b) Output (S1GN,m) to the adversary (via the backdoor tape). Upon receiving (SIGNATURE, m, o)
from the adversary (on the backdoor tape), verify that no entry (m,o,0) is recorded. If it is, then

output L to the caller. Else, output (SIGNATURE, m, o) to the calling party and record the entry
(m,o,1).

Signature Verification: Upon receiving a value (VERIFY, sid, m, o) from party P (including the adver-
sary) do the following: first, if pk = L then output (VERIFIED, m,0) to P. Else, output (VERIFY,m, o)
to the adversary (via backdoor tape). Upon receiving (VERIFIED, m, f, ) from the adversary (on the
backdoor tape) do:

(a) If (m,o,V') is recorded then set f =V'.

(b) Else, if the signer is not corrupted, and no entry (m,o¢’, 1) for any ¢’ is recorded, then set f =0
and record the entry (m,o,0).

(c) Else set f = ¢, and record the entry (m, o, f).
(d) Output (VERIFIED, m, f) to P.

The protocol. The protocol qbfuth works as follows, where the shared subroutine is v = IDEALGA
where A is part of the code. Note that we use the eid of the caller as the PID of the sender (to
prevent that arbitrary machines can send messages in the name of A), and also simply choose the
session-id sidy = A for the shared subroutine. We further assume an unprotected medium to send
messages, which as specified in [Can20] can be modeled by simply letting the shell forward sent
messages to the adversary (via the backdoor tape) and interpret specific inputs on the backdoor

tape as received messages.

a) Upon receiving an input (SEND,sid, B,m) from party A, verify that this machine’s eid is
g Yy Yy

8The functionality is also expected to provide this list upon a special request from dummy party with PID 7 such
that the corruption sets can be verified by the environment to be identical in both the ideal and real worlds.

Let us emphasize that party (i.e., machine) A is not a participant of the protocol ¢z, (i.e., does not run the
code ¢ .}.), but is the ITI which invokes the (sender’s part of the) protocol ¢, (with PID A).
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(gbfuth,sidHA); otherwise, ignore the request. Then, set sidg = A and m’ = (m;sid; B), send
(SIGN,m') to G4, (i.e., the input is given to the ITI running code - in session sidg with pid = A)
to obtain the response (SIGNATURE, sidg, m’, o), send (sid; A;m; o) to ITI (¢2,,,sid||B) (via
the unprotected communication medium).

(b) Upon receiving message (sid’; A;m; o) from the unprotected communication medium, this party,
denote its eid by (¢2 ., sid||B), sets sidy = A, sets m’ = (m;sid; B), sends (VERIFY, sidg, m’, o)
to G2, (i.e., the input is given to the ITI running code v in session sidg with pid = B), and
obtains a response (VERIFIED, m/, f). If f = 1 then B outputs (SENT,sid, A, B,m) (with
target eid eid; = B) and halts. Else B halts with no output.

We also assume here standard byzantine corruption of protocol ITIs as defined in [Can20]: for
a structured protocol, this involves interaction with a special corruption aggregation ITI that
aggregates all corruption information (provided by the shell of the protocols). The goal of this is
that the environment receives “genuine” information about the corruption sets during the execution.
The corruption aggregation is identified by a special PID .

The realized functionality. The realized functionality provides authenticated message exchange
between a sender A and a chosen receiver. Note that the adversarial ability to obtain legitimate
signatures on messages allows to produce a publicly verifiable trail of the message transmission
between A and B (which is referred to by the term non-deniable in [CSV16]). As above, we follow
the standard PID-wise corruption model for functionalities [Can20)].

—[ Functionality 7

cert-auth

(a) Upon receiving an input (SEND, sid, B, m) from party A, first verify that the calling (dummy) party
(running IDEAL A in session sid by definition) encodes the PID A. Ignore the request if this
is not the case. Then, generate public delayed-output to B, i.e., first output (SENT,sid, A, B, m)
to the adversary on the backdoor tape. Once delivery is granted by the adversary, output

(SENT,sid, A, B,m) to B.”

(b) Upon receiving (EXTERNAL-INFO, sid, A, B,m/) from the adversary, if an output was not yet
delivered to B, then set sidy = A and output (SIGN,sidg, (', sid, B)) on behalf of A to IDEALga .
(in session sidg) and forward the response to the adversary.

(c) Upon receiving a value (CORRUPT-SEND, sid, B’,m’) from the adversary®: if A is marked as
corrupted and an output was not yet delivered to B’, then output (SENT, A, B’,sid; m’) to B’.

(d) Upon receiving (REPORT), from a party P via dummy party with pid <7, first set sidy = A
and output (REPORT) on behalf of & to IDEALGa (in session sidg). Upon receiving the set of
corrupted parties, add the PIDs of the marked corrupted parties of this functionality and output
the list to P (via dummy party o).

“It is instructive to recall what “output m to B” means if no explicit dummy party is mentioned via which
this output is delivered [Can20, Section 7.3]: it means that the functionality produces output to a main party
running the dummy protocol with session sid and pid = B and this dummy party produces the output towards
the machine with eid = B

This is an additional adversarial capability beyond what is minimally provided by the standard PID-wise
corruption model.

The identity bound on the environment. In order to show in which contexts the protocol is
secure, we have to specify an identity bound. For the result to be broadly applicable, we have to
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find the least restrictive conditions on the allowed interaction between the environment and the
challenge protocol (and ) such that the realization statement holds.

In our specific case, we can give the following guarantee which basically says that the environment
cannot claim the extended identity of the signer: more precisely, we mean that the environment is
not allowed to claim source eid eid in requests to 7 running in a session s if eid has been already
used as the PID to sign a value (m,s,-) and PID is not marked as corrupted. Conversely, the
environment is not allowed to invoke 7 to sign a value (m,s,-) using as PID an extended id eid
which has been used before as the caller of 7 running in session s and which is not marked as
corrupted. Furthermore, it is not allowed that the environment provides input to the ITI (v, -||.<7)
(where “not allowed” means that the input provided by the environment is formally rejected if the
condition is satisfied by the state of the system at the moment of providing the input. See more
details in [Can20]). All other invocations are allowed.

Implications of the above identity bound. Recall that any non-trivial bound & restricts the
class of context protocols p for which the UCGS theorem applies: Essentially the theorem applies
only to those protocols p which manage to guarantee that the bound £ remains valid for any
combination of ¢ and v as subroutines within p, and similarly for any combination of 7 and ~
as subroutines of p?~7. In the above case, this means that authenticity of the sender identity is
guaranteed as long as the context protocol p makes sure that the global certification module ~ only
takes signature requests from entitities that correctly represent their identity. Since the underlying
model guarantees that the caller identity is correctly represented, except for the case of inputs
provided by the environment, this means that authenticity is guaranteed as long as p makes sure
that v does not take inputs directly from the environment.

We note that the restriction also touches the corruption model in order to ensure PID-wise
corruption. We force the environment to obtain the system’s corruption information only through
one corruption aggregation machine, which in our case is the functionality (resp. challenge protocol)
that provides the entire system’s view to Z. Note that this is in accordance with the approach that
there is exactly one machine in an execution that provides this information to the environment. We
thus have:

Lemma 4.3. Let I be an extended identity, and let £ be the predicate that allows all extended
identities other than I as described above. Protocol (Z)a{tuth UC-realizes Fclert-auth in the presence of
v = IDEALgr with respect to the identity bound ;.

Proof sketch. We can consider dummy adversary D in an execution with an environment and the
protocol. Note that by Definition 4.2 we need to satisfy Definition 3.1, i.e., the environment either
interacts with D and main parties running M [gbfuth, 7], or with a simulator (that we define below) and
main parties running M[IDEAL FA L ~], without seeing any difference between the two settings.
In principle, the simulator proceeds as in [CSV16], with some modifications that relate to the
introduction of modeling tools.

Simulating the sender. When an honest main party with pid = A is activated (by a claimed
source eid = A) and given input (SEND, sid, B,m), S is activated by the authentication functionality
and learns the value m and issues (EXTERNAL-INFO, sid, A, B, m) to obtain the signature o; here,
the simulator simply behaves as D in the interaction with the backdoor tape of G4 . Note that
technically, communication to this backdoor tape—as well as to and from all backdoor tapes

corresponding to the actual protocol ITIs running (Z)futh, IDEAL 7a or the shared subroutine
cert-auth
A

sort)s where by definition sh] allows direct

~—is accomplished via the backdoor tape of the shell sh[G
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interaction between S (resp. D in the real world) and the backdoor tape of virtual ITI running
inside it.

Once functionality féért-auth produces output (SIGNATURE, m, 0), the simulator emulates real-
world protocol message (sid; A;m; o) with destination B.

If the sender is corrupted, i.e., pid = A is registered as corrupted, then S corrupts this pid as well
(in any of the functionalities). All the simulator now has to do is to behave like D in the interaction
with G4, (since upon any activation of the main party with PID A, the dummy adversary would be
activated) and no interaction is required between S and F, A 1, unless when delivering a message

cert-aut
to the receiver as discussed in the following.

Simulating the receiver. Consider the case that the environment provides & with input
(sid; A;m/;0’) on the backdoor tape to be delivered to destination B, and assume pid = B is
uncorrupted (as otherwise, simulation is trivial). S then sets sidg = A, m = (m/;sid; B), sends
(VERIFY, sidg, 11, 0’) to G2,,. When obtaining the response (VERIFIED, 7, f = 1), then do the
following: if the sender is honest, then allow ]-"éirt_auth to deliver this message (i.e., grant the delivery
by answering the corresponding public delayed-output request from the functionality)—and abort
if this message was not sent by the honest sender before (i.e., when delivering this message is not
possible). If the sender is corrupted though, then input (CORRUPT-SEND, sid, B, m’) to fért_auth.
When obtaining the response (VERIFIED, i, f = 0), then do nothing.

The main argument for indistinguishability provided in [CSV16] is that the simulator above
never aborts, and hence he can always simulate the real-world messages and their signatures. The
simulator never aborts since, if the sender is honest and by the identity bound &, the sender in
session sid is the only ITI obtaining a valid signature. If a signature has never been requested, then
G4, will never produce f = 1 upon verification of a message for A that A has never sent for session
sid.

We would like to point out further properties that must be satisfied in order for indistinguishability
to hold. First, the protocol M[(ﬁfuth, ~] does by definition delete the code of gbfuth, thus, any output
generated towards the environment only leaks session and party identifier the virtual ITI running
¢;4uth (and thus not the code). Furthermore, the UC control function itself ensures that the
environment at any point only sees the party and session identifiers of the main parties of the
execution (which coincided with the party and session identifiers of the virtual ITI running ¢4, by
definition of M[]).

Next, the code of the shared subroutine only considers the PID of the calling party. This means
that in both the real and the ideal world, the behavior of G2 . does not change its behavior according
to the code it sees. Since in both worlds, the sender has the same PID A, this means that the
outputs produced by Qé‘ért towards the environment do not signal whether it is being invoked by

protocol ¢4 }, OF IDEAL za . This concludes this proof sketch. O

aut cert-auth

4.3 Example 2: Composable Blockchains with a Global Clock

Motviation. We next showcase the shared-setups composition theorem by demonstrating how it
can be applied to obtain composition (i.e., subroutine replacement) in a context in which global
(shared) setups have recently become the norm, namely that of composable blockchains. Concretely,
a number of recent works [BGK™18, BGM 118, KKKZ18, BMTZ17] analyze the backbone protocol
(intuitively corresponding to the the consensus layer) of mainstream cryptocurrencies, such as
Bitcoin and Ouroboros assuming a global (shared) clock functionality which is used for enforcing
synchrony.
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In a nutshell these works prove that by providing access to a global clock Geock (along with
some additional local or global setups) the underlying backbone implements a functionality Ji.cdger
that abstract a transaction ledger with eventual consistency guarantees (more concretely, a ledger
enforcing the so-called common-prefix, liveness, and chain quality property, cf. [GKL15, PSS17].

Let us focus on [BMTZ17]. This work proved that inducing a special way (discussed below)
in which the global (shared) clock functionality is used—i.e., a special registration/deregistration
mechanism—there exists a simulator in the {Fyedger, Gelock }-hybrid world that emulates the behavior
of any adversary attacking the Bitcoin backbone protocol in the {Gelock, FRO, Fuet }-hybrid world,
where Fro and Fyet are standard (local to the protocol) UC functionalities. The goal of this
modeling is to enable abstracting the internals of the ledger protocol, designing protocols that
have access to the ledger functionality (and the global clock), and then using the GUC theorem to
argue that any protocol which is proved security assuming access to this local ledger functionality
will remain secure when the functionality is replaced by the Bitcoin backbone protocol. Assuming
existence of such a composition theorem, [BMTZ17] proceeded in proposing a construction of a
cryptocurrency ledger—namely a ledger functionality that also checks signatures of parties—assuming
a ledger as above and a signatures functionality. However, as discussed, the GUC modeling does
not provide sufficiently detailed treatment of external identities so as to make the above approach
go through.

We show how the UCGS Theorem can be used by arguing that the preconditions of Theorem 3.5
are satisfied for the involved components.

Context restrictions. First we need to fix the (identity bound) predicate £ used to define the
applicable context. Recall, that £ is intended to restrict the set (or rather the sequence) of extended
identities that the environment can claim when contacting protocols. Let us first consider what
happens if we do not impose any restriction. We argue that any such unrestricted access makes the
global clock functionality behave in a way that no longer ensures synchrony.

To this direction let us recall the basic idea behind clock Geock. For clarity, we show a
concrete clock functionality formulated in our model in Figure 7. The functionality G.ocr Stores a
monotonically increasing counter 7gq (corresponding to the current time or global round) which any
party can request by issuing a special CLOCK-READ command. Furthermore, any honest party can
send a message CLOCK-UPDATE to the clock which records it and once all honest parties have sent
such a request while the time was 744, the clock increases its time, i.e., sets T5q := Tgig + 1.

The above clock was used as follows to ensure synchrony—i.e., that no party starts its round
p + 1 before every party has finished round p—which was a property necessary for the security
proof in the above blockchain protocols: In each round, as soon as a party has completed all its
actions (sent and received all its messages) for the current round, it signals this to the clock by
sending a CLOCK-UPDATE command; from that point on this party keeps asking the clock for the
time whenever activated and proceeds to the next round only once it observes that this counter
advances. As the latter event requires everyone to signal that they are done with the current round,
this gives us the desired synchrony guarantee. Notably, by design of the setup, any Gelocc-ideal
protocol 7 is trivially regular (according to Definition 3.3). This is true because the clock has a
special registration mechanism which forces it to only talk to ITIs which have already registered
with it and therefore never spawns new ITIs as required by that definition.

So what happens to the above, when £ is overly liberal? If the environment is allowed to
impersonate the protocol session of a party towards the clock (by issuing an external write request
with the source-ID being the session of that party) then the environment is able to make the clock
advance without waiting for this party, thus entirely destroys the above round structure. This points
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—l Functionality G.jouc }

The functionality manages the set P of registered machines (identified by extended identities), i.c., a
machine is added to P when receiving input REGISTER (and removes a machine from P when receiving
DE-REGISTER. The requests give activation back to the calling machine).

For each identity P € P it manages a variable dp. For each session identifier sid specified in an extended
identity P € P, the clock manages a variable 744 (all these integer variables are initially 0).

Synchronization:

e Upon receiving (CLOCK-UPDATE, sid¢) from P € P, first verify that the calling (dummy) party
encodes P as its PID; otherwise ignore the request. Set dp := 1; execute Round-Update and
forward (CLOCK-UPDATE,sid¢, P) to A.

e Upon receiving (CLOCK-READ, sid¢) from any ITI P, execute Round-Update, and then return
(CLOCK-READ, sid¢, Tsiq) to the requestor, where sid corresponds to the session identifier encoded
in P.

Procedure Round-Update: For each managed session sid do: If dp = 1 for all uncorrupted P = (-,sid||-) € P,
then set T4 := Tsid + 1 and reset dp := 0 for all identities P = (-, sid||-) € P.

Figure 7: A global clock functionality. We remark that due to the clean definition of shared
subroutines in our model, the depicted global clock has a simpler structure than the clock in the
original version of [BMTZ17]. Still, the clock offers the same functionality towards calling ITIs.

to the following natural £&: The environment is not able to issue any request to the clock which has
source ID the ID of a party that already exists in the system, or to spawn any ITI for which it
already claimed an external identity before in an interaction with the clock. This corresponds to
item (a) in the last paragraph of section Section 3.4.1° This requirement is assumed and shown to
be sufficient in [BMTZ17] and therefore implies that the environment cannot make the clock ignore
existing honest parties playing the protocol, hence the clock will enable the above synchronous
rounds structure. In the following we will use this £ to apply Theorem 3.5; for clarity we denote it

as gsync-

Applying the composition theorem. Assume now that we want to prove that in the afore-
mentioned construction of the cryptocurrency ledger from the simpler (backbone) ledger Fi.cdger
from [BMTZ17] we can replace the simpler ledger FLedger Dy the backbone protocol. This corre-
sponds to proving Theorem 3.5 for v being the Ggocc-ideal protocol, ™ being the backbone protocol,
¢ being the Fieqger-ideal protocol, and p being the construction of the cryptocurrency ledger with
access to ¢. All protocols, 7, ¢, p can access protocol . First, by inspection of these protocols,
we can verify that p, ¢, m,y are subroutine respecting. Note that although the protocols logic is
involved, the subroutine structure is quite simple (i.e., subroutine calls only go to ideal protocols
that formalize either local or global setups). In particular, although not directly claimed in the
original version of in [BMTZ17], it is possible to convert both ¢ and 7 into subroutine-exposing
protocols by applying the exposing mechanismdescribed in Definition 2.7(by equipping the protocols
with the respective subroutine-exposing shell). Finally, both = and ¢ are by design subroutine
respecting except with calls to v (note that this is due to the fact that a similar concept exists in

10Clearly, if we assume again PID-wise corruption like previous paragraphs, we need to further restrict the environment
to access only the corruption aggregation machine of the ledger protocol to obtain the natural interpretation of
“PID-wise corruption”.
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EUC). Finally, restricting the environment via &y, ensures that the use of v (i.e., the clock) will
induce the desired synchronous structure specified for the simulation proof from [BMTZ17]. Given
all of this, the UC-realization proof of [BMTZ17] can be translated to this model (the overhead is
identical to the overhead in the previous example) to conclude that 7 UC-emulate ¢ in the presence
of v when the environment is {5y -identity-bounded. Thus we can apply Theorem 3.5 to prove that
p®~™ UC-emulates p whenever the context protocol calls the subroutine (to be replaced) in the
legal way as defined by &g, and obtain the desired statement.!!
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A On GUC and EUC

Generalized universal composability (GUC), as defined by Canetti, Dodis, Pass, and Walfish [CDPW07],
operates on the same formal basis as plain UC (more concretely: the version from 2005 [Can05]) but
allows more freedom to the environment. Recall that, as described in Section 2, the UC environment
can invoke only ITIs within a single protocol session, the so-called test session, and the code of
these ITIs is set by the control function to the code of the specified challenge protocol w. The
GUC framework does not restrict the environment in this way: the environment Z is allowed
to instantiate arbitrary ITTs, running arbitrary chosen code, in arbitrary sessions. In particular,
environment Z can run arbitrarily many sessions of the challenge protocol m. In the description
of the security experiment of Canetti et al. [CDPWO7], it remains unclear how the environment
signals to the control function that it intents to instantiate an ITI with the code of the challenge
protocol. Independently of the particular choice that one makes, however, the GUC experiment
described there does not lead to a reasonable security definition.
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Inconsistencies in GUC. More formally, the outcome of the GUC experiment with environment
Z, adversary A, and challenge protocol 7 defines the random variable GEXEC, 4 z. The definition
of GUC protocol emulation is then analogous to the one for UC.

Definition A.1 (GUC-Emulation [CDPWO07]). Let 7 and ¢ be PPT multi-party protocols. We
say that m GUC-emulates ¢ if, for any PPT adversary A, there exists a PPT adversary S such that
for any (unconstrained) PPT environment Z, we have:

GEXECg,s,z & GEXECy 4 2.

If the environment is supposed to be truly unconstrained, then it should be able to instantiate,
in addition to the test protocol, which is either m or ¢ in the above experiments, further instances
of m and ¢, and with arbitrary session identifiers. (Also in terms of notation, there is nothing that
refers to 7 in GEXEC4 s z or to ¢ in GEXEC, 4 z.) This, however, is problematic: if Z invokes an
instance of, say, w, with a session identifier that matches one that is used in a test session, then 7
will be able to communicate with the test session in GEXEC 4 z, but not in GEXECy4 s z. For many
natural protocols, this will lead to attacks in the model that do not correspond to any real-world
vulnerability.

One can of course come up with ad-hoc fixes such as forbidding the environment Z to invoke
further instances of m and ¢, at least with the same session identifier. This, however, does not solve
the problem, as Z can simply invoke a protocol p that in turn invokes such a session of 7 or ¢. The
only way out seems a modification of the control function, but it is not clear whether this would
indeed solve the problem, and there is no indication in [CDPWO07] toward this direction.

The definition of an EUC execution in [CDPWO7] follows much closer the description of a UC
execution in [Can01]. For a shared functionality G and a challenge protocol 7, environment Z is
allowed to invoke (a) one session of the challenge protocol m and (b) one instance of the shared
functionality G. An environment Z that adheres to these restrictions is dubbed a G-externally
constrained environment. The execution of Z with challenge protocol 7, shared functionality G, and
adversary A is denoted as EXEC;C;’ Az

Definition A.2 (EUC-Emulation [CDPWO07]). Let m and ¢ be PPT multi-party protocols, where
7 is G-subroutine respecting. We say that m emulates ¢ with respect to shared functionality G (or,
in shorthand, that 7 G-emulates ¢) if for any PPT adversary A there exists a PPT adversary S
such that for any G-externally constrained environment Z, we have

G G
EXEC] g z &~ EXEC] 4 7.

The EUC definition itself makes sense, modulo formal inconsistencies in the underlying version
of the UC framework [Can05]. The problem is, however, that the proof of the composition theorem
in [CDPWO7] crucially depends on GUC, which is formally inconsistent.

Subtleties in the Equivalence of GUC and EUC. The work of Canetti et al. [CDPWO07]
contains an equivalence statement between GUC and EUC. A protocol 7 is G-subroutine respecting
if it is subroutine respecting in the standard UC sense except that it can make calls to the subroutine
G that can be shared with other protocols. Said equivalence then states that 7 is GUC secure if
and only if it is EUC secure.

Theorem A.3 (GUC <= EUC, [CDPWO07, Theorem 2.1]). Let 7 be a protocol that is G-subroutine-
respecting. Then -
m GUC-emulates ¢ <= m G-EUC-emulates w
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GUC = EUC. This direction trivially holds due to the fact that every G-externally environment
Zs puc can be viewed as an unconstrained environment. Formally, this is done by constructing a
distinguishing environment Zguyc which internally executes Z; ;¢ and relays all queries. Zguc is

depicted in Figure 8.
g \

Zauc

Figure 8: Constructing Zguc out of Z; ¢, where = denotes a dummy party.

EUC — GUC. We first recall the proof strategy from [CDPWO07]. In a nutshell, they assume an
unconstrained distinguisher Zguc and show how to construct a G-externally constrained environment
Z* from it. As EUC only has a single test session'?, Canetti et al. use a hybrid argument to replace
one instance of 7 at a time by an instance of ¢ using only Zs ;¢ conforming requests.

The first problem is that it is not clear how the behavior of Zgyc can be emulated by Zg pyc-
Recall that Zgyc is unconstrained and should in particular be able to spawn arbitrary ITIs that
share the session identifier with the chosen test session. (As discussed above, even if Zgyc cannot
do so directly, it can spawn subroutines that will do this for it.) Environment Zz puc can simply
not do this: the EUC experiment simply does not allow it to create such subroutines; even if Z5 p;¢
were emulating the behavior of these subroutines, it would not be allowed to send the messages that
the emulated subroutines generate (since they would be in the name of parties of the test session.

Furthermore, as an additional example, let us consider an environment Zgyc which invokes
only two instances of the challenge protocol. Then Game 0 is the real GUC execution where two
instances of m are invoked. In Game 1, the first invocation of the challenge protocol creates an
instance of ¢, and the second invocation creates an instance of 7. Finally, in Game 2, two instances
of ¢ are invoked, so this is equal to the ideal GUC execution. Now every distinguisher between
the real GUC execution (only instances of 7 are invoked) and the ideal GUC execution (only
instances of ¢ are invoked) must distinguish one of the intermediate games, yielding a G-externally
constrained distinguisher Z*. The hybrids are depicted in Figure 9. For ease of presentation, we
assume protocols 7 and ¢ involving only two parties Pp, Py, where only P, calls the shared setup G.

Unfortunately, one crucial step in the above hybrid argument is not argued. This can be best
explained by looking at Figure 9. Consider the cases corresponding to Game 1, namely on the left

12Note that technically, this condition does imply a regularity condition on G along the lines of our regularity
condition, as otherwise G could spawn a second session on its own.
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’ Zauc ‘ Zx ’ Zguc ‘ Z

Figure 9: Left: Transition from Game 0 (real execution with two instances of 7) to Game 1 (one
instance of ¢ and one of 7), depending on whether 7 or ¢ runs outside of the G-externally constrained
Z*. Right: Transition from Game 1 to Game 2 (ideal execution with two instances of ¢). Note
that in Game 1 Z* internally runs one copy of Sy for simulating the first instance of the challenge
protocol. As before, = denotes a dummy party.

where the external protocol is ¢, and on the right where the external protocol is w. These two cases
must be the same, and in particular they must be the same from the perspective of G, as otherwise
G could behave differently toward the environment and thereby prevent the equivalence.

While it is conceivable that such an equivalence could be argued, this is non-trivial and the
GUC paper omits too many important details (e.g. how identities are handled, how the functionality
G is accessed by the environment, etc.) to evaluate this claim.

B The Code of the Transformation

,—[ Protocol M|, ] }

Let eidy; = (codeyy, sidy||pidy) be code, SID, and PID of this ITI as written on the identity tape. Initialize
sid, := ¢ as the empty string and H[.] as an empty map. Set eidegnir := (codeyr, sidn||pidegpir )-

Subroutine exposing. Machine M[-] follows the subroutine-exposing instructions, i.e., it registers itself
and all invoked subroutines in the directory ITIaccording to Definition 2.7.
Incoming messages on the input tape.

— Upon receiving an input in := (m,eid’), where eid’ is an extended identity, parse m :=
((m’, eidgyc), eidgest) where eidgest = (code, sidgest||pidgest) 1S an extended identity. If code = MAIN
overwrite (within eidgest) code < 7, in case of GLOBAL overwrite code «— . Otherwise, overwrite
code + L. Additionally, store the source machine as H|[eidsc] < eid’. //Unwrap the real message,
set the correct code, and remember the source machine.

— If sid; = € then query the execution graph directory eidegpir. If there is some entry (M,sid) where
M is an ITT with code 7, then set sid, := sid for the first such entry. Discard and give up activation
if code & {m,~} or if pidg. # pidy or if code = 7 Asid; # & A sidgest # sidy.//Only talk to one

instance of w, or to 7
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— If code = 7 then set sid;, := sidqest. Define eid := (sh[code], (sidgest, sidn)||pidyg)-
Send (REGISTER, Sidgest) to eidegnir. Issue the external-write request (f := 1,eid,t,r :=
1, eidn, (m’, eidgc)), where ¢ denotes the input tape. //Send message to corresponding shell

Incoming messages on the subroutine-output tape.

— Upon receiving a subroutine output sub-out := (m, eid), where eid = (code, sid||pid) is an extended
identity, parse code = (sh[code’], (sid’, sid”)||pid) and m := ((m’, eidgrc), eiddest)-

— If sidy = € then query eidegprr for the list of registered ITIs, and if some entry (M, sid) exists, where
M has code T, set sid, := sid for the first such entry. Discard and give up activation if code’ ¢ {m,~}
or if code = 7 A'sid, = ¢ or if code’ = 7 but eid # (sh[r], (sid,, sidn)||pidy;).//Only talk to one
instance of m, or to vy

— If eidg;e = (m,sid||pid) (for some pid, sid) then set eid.,. := (MAIN, sid||pid), if eids;c = (7, sid||pid) (for
some pid, sid) then set eid. . := (GLOBAL,sid||pid). Overwrite m := (m’,eid.,.). //Hide source of
message from calling ITI

— Issue an external-write request: If H[eidqest] # L, then issue (f = 1, H|eidqest], t, 7" = 1, eidy, m),
and otherwise, issue (f’ = 1, eidgest, t, 7’ = 1, eidy, m) where ¢ denotes in both cases the subroutine-
output tape.

Incoming messages for the backdoor tape. This protocol ignores messages to the backdoor tapes
(and does not write to the backdoor tape of any other machine).

\.

,—‘ Shell sh{code]

Let eids, denote the contents on the identity tape and let pidy, and sidsy, =: (sidioc, sidy) denote the

PID and SID, respectively. Set eidegpir := (codeys, sidn||pidegpir) (Where pide,pig is a publicly known

special PID and codey; can be extracted from the extended identity of the sender on the input tape upon

first invocation).

Incoming messages.

//Relay message to virtual ITI

I-1: Upon receiving an input or subroutine output (m,eid), where eid = (1, sid||pid) is an extended
identity, parse m as (m/, eidgc). Query eidegpir for the list of the registered ITIs. If eid is not
contained in the list, or sid is not either sidy or of the form (*,sidy ), then ignore the message.
Otherwise, do:

— If the virtual ITI M’ = (code, sidjo.||pidg,) already exists, then message m’ and eids.. are
written to the corresponding tape of M’. Virtual ITI M’ is then activated.

— If the virtual ITI M’ = (code, sidjoc||pidg,) does not exist yet, then a new one is created, i.e., a
new configuration for program code with the corresponding identity is created and the request
is executed as above.

//Corruption handling: only existing virtual ITIs can be corrupted, shells are incorruptible

1-2: Upon receiving m on the backdoor tape, sh parses it as (m/, eidgest), where eidgest is an extended
identity. If eidgest # (code,sidioc||pidg,) then discard the input and give up activation (i.e., ITIs
running sh[-] are not corrupted).

1: If the virtual ITM M’ = eidqesy does not exist yet, then give up activation.

2: If the virtual ITM M’ = eidqes; exists, m’ is written on its backdoor tape and M’ is activated.

Outgoing messages.

//Shell can give input to any subsidiary of M(]

O-1: If the virtual ITT of the body issues an external-write instruction (f,eiddest,,”, €idswc, m)
where ¢ denotes the input tape, then: (%) Parse eidgest =: (codedest, (Siddest||Pidgest))-
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Send (INVOKE, sh[codegest|, eidsye —  €idgest) to eidegprr. Issue an external-write instruction
(f, (sh[codeqest], (Siddest, sidn)|[Pidgest ), t, 7 €idsh, m') where m’ = (m, eidgyc).
//Subroutine output either goes to M[] or to another shell

0-2: If the virtual ITT of the body issues an external-write instruction (f,eidqest, t, 7, €idsyc, m) where ¢
denotes the subroutine-output tape, query eidegpir to obtain the list of registered ITIs and the
execution graph structure of the virtual ITTs.

— //Detecting the sessions of w and v that produce output to the environment/context protocol.
If the obtained execution graph reveals that (1) this ITI with sidg, = (sidjoc, sidy) is a main party
of the test session of 7 (i.e., the one invoked by M[m,v]) and eidqest is not part of this extended
test session or (2) eidqest is not part of the extended test session and this ITI runs a virtual ITI
with code 7: then issue an external-write instruction (f,eidy, ¢, r, (sh[code], sidsy||pidgy, ), m'),
where m’ = ((m, eidgrc), €iddest ), €idy denotes the unique identity from the list of registered
devices running code codey; with identity (sidp||pidg,)-

— //Otherwise, the subroutine output goes to a ITI which must be part of this extended instance.

Else, proceed as in O-1 position () and use the subroutine relation eidgest — €idsye When
talking to eidegDIR.

//Enable communication with adversary
0-3: If the virtual ITI sends backdoor message m’ to the adversary, then define the message

m = (m/,(code,sidi.||pidy,)) and execute the external-write request (f' = 0,(L,L), ¢, 7 =
1, (sh[code], sidioc||pidgy,), m') destined for the adversary ITI.
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