Non-Interactive Proofs of Proof-of-Work

Aggelos Kiayias', Andrew Miller?, and Dionysis Zindros®

! University of Edinburgh, TOHK
2 University of Illinois at Urbana-Champaign, Initiative for Cryptocurrencies and Contracts
3 National and Kapodistrian University of Athens, IOHK

May 31, 2018

Abstract. Open consensus protocols based on proof-of-work (PoW) mining are at the core
of cryptocurrencies such Bitcoin and Ethereum, as well as many others. In this work, we
construct a new primitive called Non-Interactive-Proofs-of-Proof-of-Work (NIPoPoWs) that
can be adapted into existing PoW-based cryptocurrencies to improve their performance
and extend their functionality. Unlike a traditional blockchain client which must verify the
entire linearly-growing chain of PoWs, clients based on NIPoPoWs require resources only
logarithmic in the length of the blockchain. NIPoPoWs are thus succinct proofs and require
only a single message between the prover and the verifier of the transaction.

With our construction we are able to prove a broad array of useful predicates in the context
of cross PoW-based blockchain transfers of assets, including predicates about facts buried
deep within a blockchain which is necessary for the basic application of accepting payments.
We provide empirical validation for NIPoPoWs through an implementation and benchmark
study, in the context of two new applications: First, we consider a multi-client blockchain
that supports all proof-of-work currencies rather than just one, with up to 90% reduction
in bandwidth. Second, we discuss a “cross-chain ICO” application that spans multiple inde-
pendent blockchains. Using our experimental data, we provide concrete parameters for our
scheme.

1 Introduction

Today, Bitcoin and Ethereum remain the two largest proof-of-work cryptocurrencies by
market cap. However, the ecosystem has grown diverse, with dozens of viable “altcoin”
competitors. Given such an environment, it becomes increasingly important to be able
to efficiently handle multiple blockchains by the same client and reliably transfer assets
between them.

The first objective requires optimizing the “SPV client” described in the original Bit-
coin paper [19] which requires processing an amount of data growing linearly with the size
of the blockchain.

The second objective has received significant attention in the context of “cross-chain”
applications, i.e., logical transactions that span multiple separate blockchains. Simple
cross-chain transactions are feasible today: the most well-known is the atomic exchange [14,
20], e.g., a trade of bitcoin for ether. However, more sophisticated applications [6,9,16,25,
27,30] could be enabled by a more efficient proof process, which would allow the blockchain
of one cryptocurrency to embed a client of a separate cryptocurrency. This concept, ini-
tially popularized by a proposal by Back et al. [2] can be used to avoid a difficult upgrade
process: a new blockchain with additional features, such as experimental opcodes, can be
backed by deposits in the original bitcoin currency, obviating the need to transfer capital
to the new cryptocurrency. As one example of cross-chain interfacing, we describe an ini-
tial coin offering (ICO) [26] which distributes tokens issued on one blockchain, but allows
paying for them using coins in another blockchain.

1.1 Our contributions

Our main technical contribution is the introduction and instantiation of a new crypto-
graphic primitive called Non-Interactive Proofs of Proof-of-Work (NIPoPoW).

We present a formal model and a provably secure instantiation of NIPoPoWs. Our
contribution builds on previous work of the backbone model [12] in terms of modeling
and [15] who introduced the concept of (interactive) Proofs of Proof-of-Work, which, in
turn, are based on previous discussion of such concepts in the bitcoin forums [18]. In fact,
we present an attack against the construction of [15] that can be mounted by an adversary
with less than 50% of hashing power. As a result our construction is the first Proof of Proof-
of-Work (regardless of interactivity) that is secure assuming honest majority. Furthermore,
our solution is non-interactive making it the first protocol of this kind.

Regarding to the predicates that are to be demonstrated, previous work allowed only
proving that the k-sized suffir of the currently adopted blockchain is as claimed. We
generalize this notion to prove any predicate across a class of predicates which we call infix
sensitive. This enables proving powerful statements pertaining to the blockchain such as
the fact that a transaction took place, that a smart contract method ran with certain
parameters, or that a payment was made into an account. The most basic application of
such proofs, payment verification, require more general predicates than what is covered in
previous work, and we enable these.

We prove the proofs are optimistically succinct meaning that they are logarithmic
in size in honest conditions. Improving previous work, we show that, in the optimistic
model of no adversarial mining power, succinctness can be achieved for even adversarially-
generated proofs by introducing the novel concept of certificates of badness. Our definition
fills the gap in terms of security modeling and design that existed in previous proposals,
e.g., the notion of cumulative “Dynamic Member Multisignature” [2].

We provide concrete parameterization and empirical analysis showing the savings of
our approach versus existing clients. Using real data from the Bitcoin and other networks,
we quantify the savings of NIPoPoWs over the previous techniques of constructing SPV
verifiers. For a multi-blockchain client that receives 100 payments per day, we offer a 90%
reduction in bandwidth compared to naive SPV.

In summary, we make the following contributions:

1. We construct the first provably secure Proofs of Proof-of-Work.

We make them non-interactive.

3. We describe an attack against the previously known proof-of-proof-of-work construc-
tion.

4. We extend proofs to prove gemeric infiz predicates pertaining to transactions deep
within the blockchain.

5. We improve succinctness of previous proofs by weakening the optimality assumptions.

6. We provide experimental data which measure the efficiency and security of our scheme
as well as concrete parameters based on these experiments.

o

2 Model and Definitions

Our model for describing our results is based on the standard “backbone” model for
proof-of-work cryptocurrencies [12], extended with the widely used Simplified Payment
Verification (SPV) mode due to Nakamoto [19]. We consider three roles in our setting:
lightweight clients, full nodes, and miners.*

Nodes and miners run the Bitcoin backbone protocol, maintaining a copy of the
blockchain and committing new transactions they receive from clients. Clients do not
store the entire blockchain, but instead connect to nodes for service and request up-to-
date information about the blockchain, for example whether a particular payment has

1 Full nodes can be thought of as miners with zero hashpower.

been finalized. Our main challenge is to design a protocol so that clients can sieve through
the responses they receive from the network and reach a conclusion that should never
disagree with the conclusion of a full node who is faced with the same objective and infers
it from its local blockchain state.

2.1 Backbone model

The entities on the blockchain network are of 3 kinds: (1) miners, who try to mine new
blocks on top of the longest known blockchain and broadcast them as soon as they are
discovered (for simplicity we assume that difficulty is constant and thus the “longest
chain rule” sufficiently describes honest miner behavior); (2) full nodes, who maintain
the longest blockchain without mining and also act as the provers in the network; (3)
verifiers or stateless clients, who connect to provers and ask for proofs in regards to which
blockchain is the largest. The verifiers attempt to determine the value of a predicate on
these chains.

We model proof-of-work discovery attempts by using a random oracle [4] as in [12].
For clarity, we present our results in the backbone model [12], although we suspect our
results transfer easily to more refined models, such as Pass et al. [21]. More specifically, we
remark that we assume a synchronous model in this paper. While we suspect our results
carry over in a treatment in a partially synchronous model with bounded delay, this is left
for future work.

The random oracle produces k-bit strings, where & is the system’s security parameter.
The network is synchronized into numbered rounds, which correspond to moments in time.
n denotes the total number of miners in the game, while ¢ denotes the total number of
adversarial miners. Each miner is assumed to have equal mining power captured by the
number of queries ¢ available per player to the random oracle, each query of which succeeds
independently with probability p (a successful query produces a block with valid proof-of-
work). Mining pools and miners of different computing power can be captured by assuming
multiple players combine their computing power. This is made explicit for the adversary,
as they do not incur any network overhead to achieve communication between adversarial
miners. On the contrary, honest players discovering a block must diffuse it (broadcast it)
to the network at a given round and wait for it to be received by the rest of the honest
players at the beginning of the next round. A round during which an honest block is
diffused is called a successful round; if the number of honest blocks diffused is one, it is
called uniquely successful round. We assume there is an honest majority, i.e., that t/n < 0.5
with a significant gap [12]. We further assume that the network is adversarial, but that
there is no eclipsing attacks [13]. More specifically, we allow the adversary to reorder
messages transmitted at a particular round, to inject new messages thereby capturing
Sybil attacks [10], but not to drop messages. Each honest miner maintains a local chain
C which they consider the current active blockchain. Upon receiving a different blockchain
from the network, the current active blockchain is changed if the received blockchain is
longer than the currently adopted one. Receiving a different blockchain of the same length
as the currently adopted one does not change the adopted blockchain.

Blockchain blocks are generated by including the following data in them: ctr, the
nonce used to achieve the proof-of-work; x the Merkle tree [17] root of the transactions
confirmed in this block; and interlink [15], a vector containing pointers to previous blocks,
including the id of the previous block. The interlink data structure contains pointers to
more blocks than just the previous block. We will explain this further in Section 3. Given
two hash functions H and G modelled as random oracles, the id of a block is defined as
id = H(ctr, G(z,interlink)). In bitcoin’s case, both H and G would be SHA256.

2.2 The prover and verifier model

In our protocol, the nodes include a proof along with their responses to clients. We need to
assume that clients are able to connect to at least one correctly functioning node (i.e., that
they cannot be eclipsed from the network [1,13]). Each client makes the same request to
every node, and by verifying the proofs the client identifies the correct response. Henceforth
we will call clients verifiers and nodes provers. Note that in the interactive protocol from
prior work [15], the prover and verifier may engage in more than one round of message
passing.

The prover-verifier interaction is parameterized by a predicate (e.g. “the transaction ¢
is committed in the blockchain”). The predicates of interest in our context are predicates
on the active blockchain. Some of the predicates are more suitable for succinct proofs than
others. We focus our attention in stable predicates having the property that all honest
miners share their view of them in a way that is updated in a predictable manner, with a
truth-value that persists as the blockchain grows (an example of an unstable predicate is
e.g., the least significant bit of the hash of last block). Following the work of [12], we wait
for k blocks to bury a block before we consider it confirmed and thereby the predicates
depending on it stable. k is the common prefiz security parameter, which in bitcoin folklore
is often taken to be k = 6.

In our setting, for a given predicate @, several provers (including adversarial ones) will
generate proofs claiming potentially different truth values for @@ based on their claimed
local longest chains. The verifier receives these proofs and accepts one of the proofs,
determining the truth value of the predicate. We denote a blockchain proof protocol for
a predicate @) as a pair (P, V) where P is the prover and V is the verifier. P is a PPT
algorithm that is spawned by a full node when they wish to produce a proof, accepts
as input a full chain C and produces a proof 7 as its output. V' is a PPT algorithm
which is spawned at some round, receives a pair of proofs (74, 7g) from both an honest
party and the adversary and returns its decision d € {T, F'} before the next round and
terminates. The honest miners produce proofs for V using P, while the adversary produces
proofs following some arbitrary strategy. Before we introduce the security properties for
blockchain proof protocols we introduce some necessary notation for blockchains.

2.3 Blockchain addressing

Our development makes use of several notation conventions for manipulating blockchain
data structures, which we introduce here. Blockchains are finite block sequences obeying
the blockchain property that in every block in the chain there exists a pointer to its previous
block. A chain is anchored if its first block is genesis, denoted Gen.

For chain addressing we use Python brackets C[-] as in [22]. A zero-based positive
number in a bracket indicates the indexed block in the chain. A negative index indicates
a block from the end, e.g., C[—1] is the tip of the blockchain. A range C[i : j| is a subarray
starting from i (inclusive) to j (exclusive).

Given chains Cq1,Cs and blocks A, Z we concatenate them as C1Cy or C1 A. C3[0] must
point to C;[—1] and A must point to C;[—1]. We denote C{A : Z} the subarray of the chain
from A (inclusive) to Z (exclusive). We can omit blocks or indices from either side of the
range to take the chain to the beginning or end respectively.

The id function returns the id of a block given its data, i.e., id = H(ctr, G(x, interlink)).

2.4 Provable chain predicates

Our aim is to prove statements about the blockchain, such as “The transaction ¢ is included
in the current blockchain.” We consider a general class of predicates that take on values

4

true or false. Since a Bitcoin-like blockchain can experience delays and intermittent forks,
not all honest parties will be in exact agreement about the entire chain. However, when
all honest parties are in agreement about the truth value of the predicate, we will soon
require in our security definition that the verifier also arrives at the same truth value.

To aid the construction of our proofs, we focus on predicates that are monotonic; they
start with the value false and, as the blockchain grows, can change their value to true but
not back.

Definition 1. (Monotonicity) A chain predicate Q(C) is monotonic if for all chains C
and for all blocks B we have that Q(C) = Q(CB).

Additionally, we require that our predicates only depend on the stable portion of the
blockchain, blocks that are buried under k subsequent blocks. This ensures that the value
of the predicate will not change due to a blockchain reorganization.

Definition 2. (Stability) Parameterized by k € N, a chain predicate Q is k-stable if its
value only depends on the prefiz C[: —k].

2.5 Desired properties

We now define two desired properties of a non-interactive blockchain proof protocol, suc-
cinctness and security.

Definition 3. (Security) A blockchain proof protocol (P, V') about a predicate @ is secure
if for all environments and for all PPT adversaries A and for all rounds r > nk, if V
receives a set of proofs P at the beginning of round r, at least one of which has been
generated by the honest prover P, then the output of V at the end of round r has the
following constraints:

— If the output of V is false, then the evaluation of Q(C) for all honest parties must be
false at the end of round r — nk.

— If the output of V' is true, then the evaluation of Q(C) for all honest parties must be
true at the end of round r + nk.

Fig. 1. The truth value of a fixed predicate @) about the blockchain, as seen from the point of view of 5
honest nodes, drawn on the vertical axis, over time, drawn as the horizontal axis. The truth value evolves
over time starting as false at the beginning, indicated by a dashed red line. At some point in time to, the
predicate is ready to be evaluated as true, indicated by the solid blue line. The various honest nodes each
realize this independently over a period of nk duration, shaded in gray. The predicate remains false for
everyone before to and true for everyone after to + nk.

node /

t t,+nk

Some explanation is needed for the rationale of the above definition. The parameter
7 is borrowed from the Backbone [12] work and indicates the rate at which new blocks

are produced, i.e., the number of rounds needed on average to produce a block. If the
scheme is secure, this means that the output of the verifier should match the output of a
potential honest full node. However, in various executions, not all potential honest full node
behaviors will be instantiated. Therefore, we require that, if the output of the proof verifier
is true then, consistently with honest behavior, all other honest full nodes will converge to
the value true. Conversely, if the output of the proof verifier is false then, consistently with
honest behavior, all honest full nodes must not have indicated true sufficiently long in the
past. The period nk is the period needed for obtaining sufficient confirmations (k) in a
blockchain system. A predicate’s value has the potential of being true as seen by an honest
party starting at time to. Before time ¢, all honest parties agree that the predicate is false.
It takes nk time for all parties to agree that the predicate is true, which is certain after
time tg+nk. The adversary may be able to convince the verifier that the predicate has any
value during the period from tg to tg+ nk. However, our security definition mandates that
before time t the verifier will necessarily output false and after time tg + nk the verifier
will necessarily output true.

Remark. The above security definition, which works in the synchronous model, strictly
requires that all NIPoPoW proofs have all been generated at some round r. In a partially
synchronous setting, NIPoPoW proofs could be generated for a period of time of a certain
length nk. Without loss of generality, it can be assumed that, in such a setting, the honest
party P generates the NIPoPoW proof at time r while the adversary generates her proof
at time r + nk, gaining some advantage. The security definition can be altered to allow
for such a setting by requiring the truth value to alter only within the period r — 2nk to
r + 2nk.

Definition 4. (Succinctness) A blockchain proof protocol (P, V') about a predicate Q is
succinet if for all PPT provers A, any proof © produced by A at some round r, the verifier
V only reads a O(polylog(r))-sized portion of m.

It is easy to construct a secure but not succinct protocol for any computable predicate
@: The prover provides the entire chain C as a proof and the verifier simply selects the
longest chain: by the common-prefiz property of the backbone protocol (c.f. [12]), this is
consistent with the view of every honest party (as long as @) depends only on a prefiz of the
chain, as we explain in more detail shortly). In fact this is how widely-used cryptocurrency
clients (including SPV clients) operate today.

It is also easy to build succinct but insecure clients: The prover simply sends the
predicate value directly. This is roughly what hosted wallets do [5].

The challenge we will solve is to provide a non-interactive protocol that at the same
time achieves security and (optimistic) succinctness over a large class of useful predicates.

3 Consensus layer support

3.1 The interlink pointers data structure

In order to construct our protocol, we rely on the same interlink data structure used by
PoPoW [15]. This is an additional hash-based data structure that is proposed to include
in the header of each block. The interlink data structure is a skip-list [23] that makes
it efficient for a verifier to process a sparse subset of the blockchain, rather than only
consecutive blocks.

Valid blocks satisfy the proof-of-work condition: id < T, where T is the mining target.
Throughout this work, we make the simplifying assumption that 7" is constant. Some

blocks will achieve a lower id. If id < 2% we say that the block is of level u. All blocks

are level 0. Blocks with level p are called p-superblocks. p-superblocks for p > 0 are also
(1 —1)-superblocks. The level of a block is given as p = [log(T") — log(id(B))] and denoted
level(B). By convention, for Gen we set id = 0 and p = oo.

Observe that in a blockchain protocol execution it is expected half of the blocks will
be of level 1, 1/4 of the blocks will be of level 2, 1/8 will be of level 3 and 1/2* blocks
will be of level u. In expectation, the number of superblock levels of a chain C will be
O(log(C)) [15]. Figure 2 illustrates the blockchain superblocks starting from level 1 and
going up to level 4 in case these blocks are distributed exactly according to expectation.
Here, each level contains half the blocks of the level below.

In our protocol, the verifier must roughly scan along one level at a time. To enable
this, instead of just the previous block, the interlink vector also points to the most recent
preceding block of every level u. Genesis is of infinite level and hence a pointer to it is
included in every block at the first available index within the interlink data structure. The
number of pointers that need to be included per block is in expectation log(|C|).

Figure 2 illustrates the blockchain superblocks starting from level 1 and going up to
level 4 in case these blocks are distributed exactly according to expectation. Note that
each level contains half the blocks of the level below.

Fig. 2. The hierarchical blockchain. Higher levels have achieved a lower target (higher difficulty) during
mining.

The algorithm for this construction is shown in Algorithm 1 and is borrowed from [15].
The interlink data structure turns the blockchain into a skiplist-like [23] data structure.

The updatelnterlink algorithm accepts a block B’, which already has an interlink data
structure defined on it. The function evaluates the interlink data structure which needs to
be included as part of the next block. It copies the existing interlink data structure and
then modifies its entries from level 0 to level(B’) to point to the block B’.

Algorithm 1 updatelnterlink

1: function updatelnterlink(B")
2: interlink <~ B’.interlink
for ;1 =0 to level(B') do
interlink[y] < id(B’)
end for
return interlink
end function

Traversing the blockchain. As we have now extended blocks to contain multiple point-
ers to previous blocks, if certain blocks are omitted from a chain we will obtain a subchain,
as long as the blockchain property that each block must contain a pointer to its previous
block in the sequence is maintained.

Blockchains are sequences, but it is more convenient to use set notation for some
operations. Specifically, B € C; C; C C2 and @ have the obvious meaning. C; U Cs is the
chain obtained by sorting the blocks contained in both C; and Cs into a sequence (this
may be not always defined). We will freely use set builder notation {B € C : p(B)}.
C1 N Cy is the chain {B: B € C; A B € C2}. In all cases, the blockchain property must be
maintained. The lowest common ancestor is LCA(C1,Ca) = (C1 N Ca)[—1]. If C1[0] = C2]0]
and Ci[—1] = Ca[—1], we say the chains C;1,Cs span the same block range.

It will soon become clear that it is useful to construct a chain containing only the
superblocks of another chain. Given C and level u, the upchain C1* is defined as {B € C :
level(B) > p}. A chain containing only p-superblocks is called a p-superchain. It is also
useful, given a p-superchain C’ to go back to the regular chain C. Given chains ' C C,
the downchain C'} ¢ is defined as C[C'[0] : C'[-1]]. C is the underlying chain of C’. The
underlying chain is often implied by context, so we will simply write C’'}.. By the above
definition, the C1 operator is absolute: (C1#)#+¢ = C1#+%. Given a set of consecutive rounds
S={r,r+1,---,r+j} CN, we define C¥ = {B € C : B was generated during S}.

4 Non-interactive blockchain suffiz proofs

In this section, we modify the PoPoW scheme introduced in KLS [15] to make it non-
interactive. With foresight, we caution the reader that the non-interactive construction
we present in this section is insecure, because the PoOPoW scheme it is based on is also
insecure. A very small patch will later allow us to modify our construction to achieve
security.

Their scheme only allowed proving suffiz predicates, predicates that pertain to the suffix
of the blockchain. We continue along those lines to give our NIPoPoW construction which
allows proving certain predicates @ of the chain C. Among the predicates which are stable,
in this section, we will limit ourselves to suffiz sensitive predicates (similar to previous
work which did not make this distinction explicit). We extend the protocol to support
more flexible predicates (such as transaction inclusion, as needed for our applications) in
Section 5.

Definition 5 (Suffix sensitivity). A chain predicate Q is called k-suffix sensitive if for
all chains C,C" with |C| > k and |C'| > k such that C[—k :] = C'[—k :] we have that
QEC) =Q(C).

Notice that if a predicate @) is suffix-sensitive, then then its value must be determined
only by the k-suffix of the chain.
Example. In general our applications will require predicates that are not suffix-sensitive.
However, as an example, consider the predicate “an Ethereum contract at address C'
has been initialized with code h at least k blocks ago” where h does not invoke the
selfdestruct opcode. This can be implemented in a suffix-sensitive way because, in
Ethereum, each block includes a Merkle Trie over all of the contract codes [8,29], which
cannot be changed after initializtion. This predicate is thus also monotonic and k-stable.

4.1 Construction

We next present a generic form of the verifier first and the prover afterwards. The generic
form of the verifier works with any practical suffix proof protocol. Therefore, we describe
the generic verifier first before we talk about the specific instantiation of our protocol. The
generic verifier is given access to call a protocol-specific proof comparison operator <,, that

Algorithm 2 The Verify algorithm for the NIPoPoW protocol

1: function Verify? , (P)

7 ¢ (Gen) > Trivial anchored blockchain
3 for (m,x) € P do > Examine each proof (7, x) in P
4 if validChain(mx) A |[x| =k AT >, @ then

5: T4

6: X X > Update current best
7

8

9

end if
end for

return Q(f()
10: end function

we define. We begin the description of our protocol by first illustrating the generic verifier.
Next, we describe the prover specific to our protocol. Finally, we show the instantiation of
the <,,, operator, which plugs into the generic verifier to make a concrete verifier for our
protocol.

The generic verifier. The Verify function of our NIPoPoW construction for suffix pred-
icates is described in Algorithm 2. The verifier algorithm is parameterized by a chain
predicate @ and security parameters k,m; k pertains to the amount of proof-of-work
needed to bury a block so that it is believed to remain stable (e.g., k = 6); m is a security
parameter pertaining to the prefix of the proof, which connects the genesis block to the
k-sized suffix. The verifier receives several proofs by different provers in a collection of
proofs P at least one of which will be honest. Iterating over these proofs, it extracts the
best.

Each proof is a chain. For honest provers, these are subchains of the adopted chain.
Proofs consist of two parts, m and x; mx must be a valid chain; x is the proof suffix; 7 is
the prefix. We require |x| = k. For honest provers, x is the last k& blocks of the adopted
chain, while 7 consists of a selected subset of blocks from the rest of their chain preceding
X- The method of choice of this subset will become clear soon.

The verifier compares the proof prefixes provided to it by calling the >, operator.
We will get to the operator’s definition shortly. Proofs are checked for validity before
comparison by ensuring |x| = k and calling validChain which checks if 7y is an anchored
blockchain.

At each loop iteration, the verifier compares the next candidate proof prefix 7 against
the currently best known proof prefix # by calling # >, 7. If the candidate prefix is
better than the currently best known proof prefix, then the currently known best prefix is
updated by setting © <— m. When the best known prefix is updated, the suffix x associated
with the best known prefix is also updated to match the suffix x of the candidate proof by
setting ¥ < x. While x is needed for the final predicate evaluation, it is not used as part
of any comparison, as it has the same size k for all proofs. The best known proof prefix
is initially set to (Gen), the trivial anchored chain containing only the genesis block. Any
well-formed proof compares favourably against the trivial chain.

After the end of the for loop, the verifier will have determined the best proof (7, x). We
will later prove that this proof will necessarily belong to an honest prover with overwhelm-
ing probability. Since the proof has been generated by an honest prover, it is associated
with an underlying honestly adopted chain C. The verifier then extracts the value of the
predicate @ on the underlying chain. Note that, because the full chain is not available
to the verifier, the verifier here must evaluate the predicate on the suffix. Because the
predicate is suffix-sensitive, it is possible to do so. As a technical detail, we denote Q the

predicate which accepts only a k-suffix of a blockchain and outputs the same value that
@ would have output if it had been evaluated on a chain with that suffix.

Algorithm 3 The Prove algorithm for the NIPoPoW protocol

1: function Prove,, i,s(C)
B« C[0] > Genesis
3 for p = |C[—k].interlink| down to 0 do
4 o+ Cl: —k|{B 3"
5: w4 mUa; B+ al-m|
6: end for
7
8
9:

x < C[-k]
return my
end function

The concrete prover. The NIPoPoW prover construction is shown in Algorithm 3. The
honest prover is supplied with an honestly adopted chain C and security parameters m, k, §
and returns proof my, which is a chain. The suffix x is the last k£ blocks of C. The prefix
7 is constructed by selecting various blocks from C[: —k] and adding them to 7, which
consists of a number of blocks for every level u. At the highest possible level at which at
least m blocks exist, all these blocks are included. Then, inductively, for every superchain
of level p that is included in the proof, the suffix of length m is taken. Then the underlying
superchain of level ;1 — 1 spanning the same blocks as that suffix is also included, until level
0 is reached. This underlying superchain will have 2m blocks in expectation and always
at least m blocks.

The algorithm returns a chain 7. In this chain, x is the suffix of an honestly adopted
blockchain containing the most recent & blocks. 7 is a subchain of the underlying blockchain
with the last & blocks removed, C[: —k].

In each iteration of the for loop, blocks of level u are considered, starting from the top-
most level |C[—E].interlink| and descending down to level 0. When we take a p-superchain
and are interested in its last m blocks, we fill the same range of blocks with blocks from
the superchain of level p — 1 below. All the p-superblocks which are within this m blocks
range will also be (p — 1)-superblocks and so we do not want to keep them in the proof
twice. Note that no check is necessary to make sure the top-most level has at least m
blocks, even though the verifier requires this. The reason is the following: Assume the
blockchain has at least m blocks in total. Then, when a superchain of level p has less
than m blocks in total, these blocks will all be necessarily included into the proof by a
lower-level superchain p — 4 for some ¢ > 0. Therefore, it does not hurt to add them to m
earlier.

Figure 3 contains an example proof constructed for parameters m = k = 3. The top
superchain level which contains at least m blocks is level y = 3. For the m-sized suffix of
that level, 5 blocks of superblock level 2 are included for support spanning the same range.
For the last 3 blocks of the level 2 superchain, blocks of level 1 are included for support.
The concrete verifier. The >,, operator which performs the comparison of proofs is
presented in Algorithm 4. It takes proofs w4 and 7 and returns true if the first proof is
winning, or false if the second is winning. It first computes the LCA block b between the
proofs. As parties A and B agree that the blockchain is the same up to block b, arguments
will then be taken for the diverging chains after b. The best possible argument from
each player’s proof is extracted by calling the best-arg,, function. We call the willingness
of the verifier to allow each prover to be evaluated based on their best argument the

10

Fig. 3. NIPoPoW prefix 7 for m = 3.

] N 0

E%m 7]

T EOmOE

principle of charity. To find the best argument of a proof 7 given b, best-arg,, collects all
the p indices which point to superblock levels that contain valid arguments after block
b. Argument validity requires that there are at least m p-superblocks following block b,
which is captured by the comparison |71 {b :}| > m. 0 is always considered a valid level,
regardless of how many blocks are present there. These level indices are collected into set
M. For each of these levels, the score of their respective argument is evaluated by weighting
the number of blocks by the level as 2#|n1# {b :}|. The highest possible score across all
levels is returned. Once the score of the best argument of both A and B is known, they
are directly compared and the winner returned. An advantage is given to the first proof
in case of a tie by using the > operator favouring A.

Algorithm 4 The algorithm implementation for the > operator to compare two proofs
in the NIPoPoW protocol parameterized with security parameter m. Returns True if the
underlying chain of player A is deemed longer than the underlying chain of player B
1: function best-arg,, (,b)
M {u s [t {b :} = m}U {0}
return max,eam {2" - |71 {b :}|}
end function
operator mA >m TB
b+ (manNmp)[—1] > LCA
return best-arg,, (wa,b) > best-arg, (75,b)
end operator

5 Non-interactive blockchain infixz proofs

In the previous section we have seen how to construct proofs for suffix predicates. As
mentioned, the main purpose of this construction is to serve as a stepping stone for
the construction of this section that presents a most useful class of proofs allow prov-
ing more general predicates that can depend on multiple blocks even buried deep within
the blockchain.

More specifically, the generalized prover for infix proofs allows proving any predicate
Q(C) that depends on a number of blocks that can appear anywhere within the chain (ex-
cept the k suffix for stability). These blocks constitute a subset C' of blocks, the witness,
which may not necessarily be a stand-alone subchain. This allows proving powerful state-
ments such as, for example, whether a transaction is confirmed. We define next formally
the class of predicates that will be of interest.

Definition 6 (Infix sensitivity). A chain predicate Qg is infix sensitive if it can be
written in the form

11

true, if 3C"' C C[: —k] : |C'| < d A D(C')

false, otherwise

Qax(C) = {

Where D is an arbitrary computable predicate.

Note that C’ is a blockset and may not necessarily be a blockchain. Furthermore,
observe that for all block sets ' C C we have that Q(C’) = Q(C). This will allow us to
later argue that adding more blocks to a blockchain cannot invalidate its witness.

Similarly to suffix-sensitive predicates, infix-sensitive predicates) can be evaluated

very efficiently. Intuitively this is possible because of their localized nature and dependency
on the D(-) predicate which requires only a small number of blocks to conclude whether
the predicate should be true.
Example. We next show how to express the predicate that asks whether a certain trans-
action with id txid has been confirmed as an infix sensitive predicate. We define the
predicate D' that receives a single block and tests whether a transaction with id tzid
is included. The predicate Q’i"”ﬁd is defined as in Definition 6 using the predicate D** and
the parameter k£ which in this case determines the desired stability of the assertion that
txid is included (such as, for instance k& = 6). Note in this case that auxiliary data will
have to be supplied by the prover to aid the provability of D. In particular, for example,
the Merkle Tree proof-of-inclusion path to the Merkle Tree root of transactions will need
to be included in the case of Bitcoin or the Merkle Patricia Trie proof-of-inclusion path to
the Transaction Trie root will need to be included in the case of Ethereum, similar to an
SPV proof. Both of these will be logarithmic in the number of transactions included in the
block and, hence, constant with respect to the size of the blockchain. In case of a vendor
awaiting transaction confirmation to ship a product, the proof that a certain transaction
paid into a designated address for the particular order should be sufficient. Note that,
in this scheme, it is impossible to determine whether the money has subsequently been
spent by the vendor in a future block, and so can only be used by the vendor holding the
respective secret keys.

In the above example, note that if the verifier outputs false, this behavior will generally
be inconclusive in the sense that the verifier could be outputting false either because the
payment has not yet been confirmed or because the payment was never made. We can
easily modify the scheme to allow the payer to claim that the payment was made at some
particular block height £. The vendor can then bail out after a number of blocks ¢ and
conclude that the payment was never made. In order to do that formally, two different infix
predicates must be evaluated by the NIPoPoW protocol. The first predicate Q1 as above
simply checks for transaction confirmation. The second predicate ()2 attests to the size of
the underlying blockchain and in particular returns ¢rue if the blockchain has grown beyond
¢ blocks long. The payment is deemed successful if Q)1 outputs true and unsuccessful if Qo
outputs true. While both predicates are false the result of the experiment is inconclusive.
The predicate @2 can be implemented in blockchains which include a verified block depth
in their block headers such as Ethereum. As always, the block whose header is checked for
block depth must be a stable block in C[: —k] to ensure that a malicious miner is not able
to tamper with it.

5.1 Construction

The construction of these proofs is shown in Algorithm 5. The infix prover accepts two
parameters: The chain C which is the full blockchain and C’ which is a sub-blockset of the
blockchain whose blocks are of interest for the predicate in question. The prover calls the

12

Fig. 4. An infix proof descend. Only blue blocks are included in the proof. Blue blocks of level 4 are part
of 7, while the blue blocks of level 1 through 3 are produced by followDown to get to the block of level 0
which is part of C'.

«] 4]

n 0 0 0 0 0 0

previous suffix prover to produce a proof as usual. Then, having the prefix 7 and suffix
x of the suffix proof in hand, the infix prover adds a few auxiliary blocks to the prefix
7. The prover ensures that these auxiliary blocks form a chain with the rest of the proof
m. Such auxiliary blocks are collected as follows: For every block B of the subchain C’,
the immediate previous (E’) and next (E) blocks in 7 are found. Then, a chain of blocks
R which connects E back to B’ is found by the algorithm followDown. If E’ is of level
i, there can be no other u-superblock between E' and B’, otherwise it would have been
included in 7. Therefore, B’ already contains a pointer to E’ in its interlink, completing
the chain.

Algorithm 5 The Prove algorithm for infix proofs

1: function Provelnfix,, (C, C’, depth)
2: (71'7 X) — Provern,k(c)

3 for B’ € C' do

4 for £ € 7 do

5: if depth[E] > depth[B’] then
6: R + followDown(E, B’, depth)
((F auzr < aur U R

8: break

9: end if
10: E' «F
11: end for
12: end for
13: return (auz U, x)

14: end function

The way to connect a superblock to a previous lower-level block is implemented in
Algorithm 6. Block B’ cannot be of higher or equal level than F, otherwise it would be
equal to £ and the followDown algorithm would return. The algorithm proceeds as follows:
Starting at block hi = E, it tries to follow a pointer to as far as possible. If following the
pointer surpasses lo = B’, then the following is aborted and a lower level is tried, which
will cause a smaller step within the skiplist. If a pointer was followed without surpassing
B’, the operation continues from the new block, until eventually B’ will be reached, which
concludes the algorithm.

13

Algorithm 6 The followDown function which produces the necessary blocks to connect
a superblock hi to a preceeding regular block lo.

1: function followDown(hi, lo, depth)
2 B+ hi; aux < [|; p < level(hi)
3 while B # lo do

4: B’ < blockByld[B.interlink[u]]
5: if depth[B’] < depth[lo] then
6: p—p—1

7 else

8: aux < aur U {B}

9: B+ B
10: end if
11: end while
12: return auzr

13: end function

An example of the output of followDown is shown in Figure 4. This is a portion of the
proof shown at the point where the superblock levels are at level 4. A descend to level 0
was necessary so that a regular block would be included in the chain. The level 0 block
can jump immediately back up to level 4 because it has a high-level pointer.

The verification algorithm must then be modified as in Algorithm 7.

The algorithm works by calling the suffix verifier. It also maintains a blockDAG col-
lecting blocks from all proofs (it is a DAG because interlink can be adversarially defined).
This DAG is maintained in the blockByld hashmap. Using it, ancestors uses simple graph
search to extract the set of ancestor blocks of a block. In the final predicate evaluation,
the set of ancestors of the best blockchain tip is passed to the predicate. The ancestors
are included to avoid an adversary who presents an honest chain but skips the blocks of
interest.

Algorithm 7 The verify algorithm for the NIPoPoW infix protocol

1: function ancestors(B, blockByld)
2: if B = Gen then

3: return {B}

4: end if

5: C+ 0

6: for B’ € B.interlink do

T C «+ C U ancestors(B’) > Collect into DAG
8: end for

9: return CU {B}
10: end function
11: function verify—infxfm,k(P)

12: blockByld < > Initialize empty hashmap
13: for (m,x) € P do

14: for B € do

15: blockByld[B.id] + B

16: end for

17: end for

18: 7T < best m € P according to suffix verifier

19: return D(ancestors(7[—1], blockByld))
20: end function

14

6 Superchain quality

In order to argue formally about the security properties of blockchains that are equipped
with the interlink data structure we will introduce a new concept of superchain quality,
which generalizes the chain quality property from the backbone model [12]. Superchain
quality is a new contribution in this paper and is essential for identifying and overcoming
the attack on PoPoW.

We first define a notion of “goodness” that bounds the deviation of superblocks of a
certain level from their expected mean. Using this we then define superchain quality.

Intuitively, these definitions tell us that pu-superblocks occur approximately once every
2# blocks. Below, we make this notion more formal.

Definition 7 (Locally good superchain). A superchain C' of level p with underly-
ing chain C is said to be p-locally-good with respect to security parameter §, written
local-goods(C',C, w), if |C'| > (1 — §)27H|C|.

Definition 8 (Superchain quality). The (§,m) superquality property Qg of a chain
C pertaining to level u with security parameters 6 € R and m € N states that for all
m’ > m, it holds that local-goods(Ct [—m/ :|,CTH [—m/]|, n). That is, all sufficiently
large suffixes are locally good.

Definition 9 (Multilevel quality). A p-superchain C' is said to have multilevel quality,
written multi-good, ., (C ,C') with respect to an underlying chain C = C'| with security
parameters k1,0 if for all i/ < p it holds that for any C* C C, if |C*" | > ki, then
€| = (1= 8)2¢ e |

Putting the above together we conclude with the notion of a good superchain.

Definition 10 (Good superchain). A p-superchain C' is said to be good, written goods ;. (C,C', 1),
with respect to an underlying chain C = C'| if it has both superquality and mullilevel quality
with parameters (5, m).

It is not hard to see that the above good statistical properties are attained with over-
whelming probability by all chains that are generated in optimistic environments, i.e. if
no adversary tries to violate them. This is proven formally in the appendix.

7 An attack

We now show that our above construction is insecure by illustrating an explicit attack
against our scheme. We show that this attack is applicable in the same manner against
our construction as it is applicable against the previous PoPoW work [15]. PoPoW serves
as the starting point and inspiration for our protocol. The security proof is incorrect, and
in fact the PoPoW protocol is susceptible to a double-spending attack within the model
(i.e., that can be carried out by an attacker with less than 50% hash power). During the
exposition of this attack, a patch for our construction, which will also lead to a correct
generic security proof, will become clear.

We focus on illustrating why the PoPoW construction of previous work is insecure
against an adversary controlling less than 50% of hashing power. The attack immediately
carries over to our straw man construction introduced above, a vulnerability we will address
in later sections. We proceed in two steps. We first show that a powerful attacker can
break chain superquality with non-negligible probability. Then we construct a concrete

15

double spending attack based on this observation assuming an attacker of sufficiently high
hashing power (but still below 50%). Note that maintaining chain superquality was not in
the original security model; however, we show how the property affects the security of the
underlying blockchain proofs.

7.1 Interactive proofs of proof-of-work

In PoPoW, the main algorithm of the verifier aims at distinguishing between two candi-
date proofs (w4, x4) and (7p, xB). The honest prover, having adopted Cp during min-
ing, initially produces the proof (mp, xB) as follows. First, the last k blocks are sent as
xB = Cp[—Fk :]. Then for the first part of the chain, Cg[: —k], the prover sets mp to be the
p-superchain spanning Cp for the largest p such that || = m, where m is the protocol’s
security parameter. The verifier ensures that |wa| > m,|mp| > m so that the proofs are
not shorter than m and then checks whether w4 = 7pg; if so, the decision is drawn imme-
diately based on x4, xp without interaction. Otherwise, the verifier queries the provers
for their claimed anchored superchains Ca1#*, CpT* at some level p. The verifier starts
querying at the highest possible level i and descends until level pu is sufficiently low such
that b = LCA(mwat, ") is m blocks from the tip of the chain for one of the proofs.
That is, the querying stops at such p when maz(|ma1 {b :}|, |7p1" {b :}|) > m. The
winner is designated as the prover with the most blocks after b at that level; i.e., A, if
|[mat {b:} > |7t {b:}|, and B otherwise. The communication overhead is reduced by
only requesting blocks after the purported LCA. The security parameter m is chosen to
ensure that the probability of the attacker producing a long superchain is negligible.

7.2 Attacking chain superquality

We construct an adversary A that breaks the superchain quality at level u. A works as
follows. Assume she wants to attack the honest party B in order to have him adopt chain
Cp which has a bad distribution of superblocks, i.e. such that local goodness is violated in
some sufficiently long subchain. She continuously determines the current chain Cp adopted
by B. The adversary starts playing after |Cp| > 2. If level(Cg[—1]) < p, then A remains
idle. However, if level(Cg[—1]) > p, then A attempts to mine an adversarial block b on top
of Cp[—2]. If successful, she attempts to mine another block " on top of b. If successful
again, she broadcasts b and . The adversarial mining continues until B adopts a new
chain, which can be due to two reasons: Either the adversary successfully mined b, on
top of Cp[—2] and B adopts them; or one of the honest parties mined a block which was
adopted by B. In either case, the adversary restarts the strategy by inspecting C[—1] and
acting accordingly. An execution of this attack is illustrated in Figure 5.

Fig. 5. Superquality attack on prior work (PoPoW) [15]. The adversary performs a selfish-mining [11]
attack (gray blocks) whenever any honest parties have recently mined a rare p-superblock (black). The
attack reduces the honest chain’s superquality, while the attacker’s private chain is unaffected.

Gen b b

e e e

Assume now that an honestly-generated p-superblock was adopted by B at position
Cgli] at round r. We now examine the probability that Cpg[i] will remain a p-superblock in

16

the long run. Suppose 1/ > r is the first round after r during which a block is generated.
A will succeed in this attack with non-negligible probability and cause B to abandon the
p-superblock from their adopted chain. Therefore, there exists § such that the adversary
will be able to cause §-variance with non-negligible probability in m. This suffices to show
that superquality is violated.

As seen in the illustration, while the honest parties have generated several p-superblocks,
some of them are in blockchain forks which have been abandoned, causing a superquality
harm.

7.3 A double-spending attack

Extending the above attack, we modify the superquality attacker into an attacker that
causes a double spending attack in the PoPoW construction. We first give a sketch of the
attack®.

As before, A targets the proofs generated by honest party B by violating u-superquality
in B’s adopted chain. A begins by remaining idle until a certain chosen block b. After
block b is produced, A starts mining a secret chain which forks off from b akin to a
selfish mining attacker [11]. The adversary performs a normal spending transaction on
the honestly adopted blockchain and has it confirmed in the block immediately following
block b. She also produces a double spending transaction which she secretly confirms in
her secret chain in the block immediately following b.

A keeps extending her own secret chain as usual. However, whenever a p-superblock is
adopted by B, she temporarily pauses mining in her secret chain and devotes her mining
power to harm the p-superquality of B’s adopted chain. Intuitively, for large enough pu,
the time spent trying to harm superquality will be limited, because the probability of a
p-superblock occurring will be small. Therefore, the adversary’s superchain quality will be
larger than the honest parties’ superchain quality (which will be harmed by the adversary)
and therefore, even though the adversary’s 0-chain will be shorter than the honest parties’
0-chain, the adversary’s p-superchain will be longer than the honest parties’ y-superchain
and thus will be favored by the verifier! The formal calculation of the probability of this
attack succeeding is in the appendix. We note that actually, for appropriate choice of
system parameters, the attack can be made to succeed with overwhelming probability.

8 Security

Based on the attack explored above, it is now easy to see that our construction can be
patched in a straightforward manner to achieve security. In particular, since the manner
in which the adversary was able to subvert the prover was by the violation of goodness,
we can mandate that the prover only tries to use succinct proofs to prove claims about
chains that are good at every level. In case goodness is violated, the prover simply falls
back to providing the whole chain. This allows us to argue that the construction is secure
by distinguishing two cases. In case goodness is violated, the honest prover will fall back
to providing the whole chain, in which case security will be reduced to the security of
the standard blockchain protocol choosing the longest O-chain. In case goodness is not
violated, we will argue that the adversary is unable to win in these comparisons.

The previous construction was designed to prevent Bahack-style attacks [3], where the
adversary constructs “lucky” high-difficulty superblocks without filling in the underlying
proof-of-work in the lower levels. We now patch our protocol which, while retaining this

5 We thank Giorgos Panagiotakos, Peter Gazi, and Nikos Leonardos for their insights in this construction.

17

highlevel approach, adds a defence against the double-spending attack of Section 7. The
attack is neutralized since our verifier is more permissive, allowing the prover to construct a
proof that takes superquality “goodness” into account when comparing forks. The modified
construction is shown in Algorithm 8. The algorithm has been modified to check the current
portion of the subchain a for goodness prior to moving to the lower superchain level. If
goodness is indeed maintained at the current level pu, the prover only tries to cover the
span of the last m blocks of level p at level p— 1, as seen in Line 7. Otherwise, if goodness
is violated at the part of the subchain « at level p, then the prover completely ignores
level p and tries to use the lower level p — 1 to cover the whole span of a.

Algorithm 8 The goodness aware Prove algorithm for the NIPoPoW protocol

1: function PrOVE$?:75(C)

2: B « C[0] > Genesis
3: for p = |C[—k].interlink| down to 0 do

4 o+ Cl: —k|{B :}t*

5: T U

6: if good; ,,,(C, o, 1) then

T B <+ a|-m]

8: end if

9: end for

10: X « Cl—k]

11: return 7y

12: end function

Only the concrete prover needs to be modified. The verifier and <,,, operator remain
as defined previously.

To aid intuition, we will first give a sketch of the proof before giving the full technical
proof.

Theorem 1 (Security). Assuming honest majority, the non-interactive proofs-of-proof-
of-work construction for computable k-stable monotonic suffix-sensitive predicates is secure
with overwhelming probability in k.

Proof (Sketch). Suppose an adversary produces a proof 74 and an honest party produces
a proof mp such that the two proofs cause the predicate @ to evaluate to different values,
while at the same time all honest parties have agreed that the correct value is the one
obtained by mp. Because of bitcoin’s security, .A will be unable to make these claims for
an actual underlying 0-level chain.

We now argue that the operator <, will signal in favour of the honest parties. Suppose
b is the LCA block between w4 and wp. If the chain forks at b, there can be no more
adversarial blocks after b than honest blocks after b, provided there are at least k honest
blocks (due to the Common Prefix property). We will now argue that, further, there can
be no more disjoint p_4-level superblocks than honest pp-level superblocks after b.

To see this, let b be an honest block generated at some round r; and let the honest
proof have been generated at some round r3. Then take the sequence of consecutive rounds
S =(r1, -+ ,r3). Because the verifier requires at least m blocks from each of the provers,
the adversary must have m p4-superblocks in w4{b :} which are not in wg{b :}. Therefore,
using a negative binomial tail bound argument, we see that |\S| must be long; intuitively,
it takes a long time to produce a lot of blocks |7 4{b :}|. Given that |S| is long and that
the honest parties have more mining power, they must have been able to produce a longer

18

wp{b:} argument (of course, this comparison will have the superchain lengths weighted by
2MA 2MB regpectively). To prove this, we use a binomial tail bound argument; intuitively,
given a long time |S], a lot of up-superblocks |rg{b :}| will have been honestly produced.

We therefore have a fixed value for the length of the adversarial argument, a negative
binomial random variable for the number of rounds, and a binomial random variable for the
length of the honest argument. By taking the expectations of the above random variables
and applying a Chernoff bound, we see that the actual values will be close to their means
with overwhelming probability, completing the proof. a

We formalize the above proof sketch in the Appendix.

9 Succinctness

We will illustrate why our construction is succinct in the honest setting. For techniques
to make the construction succinct in broader adversarial settings, consult the appendix.

Having established security in the general case of the standard honest majority model,
we now concentrate on establishing performance guarantees. We analyse the patched
scheme we saw in Algorithm 8.

We first observe that full succinctness in the standard honest majority model is impos-
sible to prove for our construction. To see why, recall that an adversary with sufficiently
large mining power can significantly harm superquality as described in Section 7.2. By
reducing superquality for a sufficiently low level p, for example pu = 3, the adversary can
cause the honest prover to digress in their proofs from high-level superchains down to
low-level superchains, causing a linear proof to be produced.

For instance, if superquality is harmed at p = 3, the prover will need to digress down
to level p = 2 and include the whole 2-superchain, which, in expectation, will be of size
ICl/2.

Having established security in the general case of the standard honest majority model,
we now concentrate our succinctness claims to the particular “optimistic” case where the
adversary does not use their (minority) computational power or network power. There-
fore, the superquality of the chain must be the same as a fully honestly-generated chain
generated with no network adversary. Last, for now, we will not allow the adversary to
produce any proofs; that is, all proofs consumed by the verifier are honestly-generated.
This security assumption is akin to [15]. We will lift this last assumption shortly.

Theorem 2 (Number of levels). The number of superblock levels which have at least
m blocks are at most log(|S]), where S is the set of all blocks produced, with overwhelming
probability in m.

Proof. Let S be the set of all blocks successfully produced by the honest parties or the
adversary. Each block id is generated by the random oracle, so Pr[id < 727#] = 27#. These
are independent Bernoulli trials. For each B € S, let X{; € {0,1} be the random variable
indicating whether the block belongs to level 4 and let D), indicate their sum, which is a
Binomial distribution with parameters (|S|,27#) and expectation E[D,] = |S|27".

For level p to exist in any valid proof, at least m blocks of level p must have been
produced by the honest parties or the adversary. We show that m blocks of level p =
log(]S]) are produced with negligible probability in m.

All of the X* are independent. We apply a Binomial Chernoff bound to the sum. We
have Pr[D,, > (14 A)E[D,]] < exp(—524 E[D,.]). But for this s we have that E[D,] = 1.

= T 2+A
Therefore P2r[D” >14 4] < exp(—ﬁ—i). Requiring 1 + A = m, we get Pr[D, > m] <
exp(— (Tn;ll)), which is negligible in m. O

19

The above theorem establishes that the number of superchains is small. What remains
to be shown is that few blocks will be included at each superchain level.

Theorem 3 (Large upchain expansion). Let C be an honestly generated chain and
let C" = Ct L [i i+] with ¢ > 4m. Then |C't* | > m with overwhelming probability in
m.

Proof. Assume the (11— 1)-level superchain has 4m blocks. Because each block of level p—1
was generated as a query to the random oracle, it constitutes an independent Bernoulli trial
and the number of blocks in level p, namely 71#, is a Binomial distribution with parameters
(4m,1/2). Clearly Pr[|xt* | = m] < Pr[|=t* | < m]. Observing that E[71*] = 2m and
applying a Chernoff bound, we get Pr[|mt# | < (1 — 3)2m] < exp(—%%n) which is
negligible in m.

This probability bounds the probability of fewer than m blocks occurring in the pu level
restriction of (pu — 1)-level superchains of more than 4m blocks. O

Lemma 1 (Small downchain support). Assume an honestly generated chain C and
let C' = Ct* [i : i +m]. Then |C'|1*~1 | < 4m with overwhelming probability in m.

Proof. Assume the (u — 1)-level superchain had at least 4m blocks. Then by Theorem 9
it follows that more than m blocks exist in level p with overwhelming probability in m,
which is a contradiction. O

This last theorem establishes the fact that the support of blocks needed under the
m-sized chain suffix to move from one level to the one below is small. Based on this, we
can establish our theorem on succinctness:

Theorem 4 (Optimistic succinctness). If all players are honest and the network
scheduling is random, non-interactive proofs-of-proof-of-work produced by honest provers
are succinct with the number of blocks bounded by 4mlog(|C|), with overwhelming proba-
bility in m.

Proof. Assume C is an honest parties’ chain. From Theorem 8, the number of levels in
the NIPoPoW is at most log(|C|) with overwhelming probability in m. First, observe that
the count of blocks in the highest level will be less than 4m from Theorem 9; otherwise
a higher superblock level would exist. From Corollary 5, we know that at all levels p the
chain will be good. Therefore, for each 1 superchain C the supporting (u — 1)-superchain
will only need to span the m-long suffix of the p-superchain above. For the m-long suffix
of each superchain of level u, the supporting superchain of level p — 1 will have at most
4m blocks from Lemma 9. Therefore the size of the proof is 4m log(|C|). a

In the above theorem, note the linear dependency between the round r that a proof is
generated and the length |C| of the chain of each honest prover.

10 Implementation & Parameters

We now discuss the size of NIPoPoW proofs and evaluate concrete parameters. Organiz-
ing the interlink data structure as a Merkle tree of log(|C|) items, a proof-of-inclusion is
provided in loglog(|C|) space; the proof need not include 0-level pointers, must include the
genesis block. The root of the tree can be proved to be included in the block header in
log(|z|) using the standard Merkle tree of transactions, where T denotes the vector of all

20

transactions included in the particular block. This makes the proof size require log(|Z|) +
loglog(|C|) hashes per block for a total of m(log(|C|) — log(m))(log(|z|) + loglog(|C|))
hashes. In addition, m(log(|C|) — log(m)) headers and coinbase transactions are needed.
As an example, given that currently in bitcoin |C| = 464,185 and |z| = 2000, we have
log(|C|) = 18,loglog(|C|) = 5,10g(|Z|) = 11. For the k-suffix, only k headers are needed.
We set k = 6 and see that headers are 80 bytes and hashes 32 bytes. For the k-suffix as
well as the 2m 0-blocks in 7, neither coinbase data nor prev ids are needed, limiting header
size to 48 bytes. The root and leaves of the pointers tree can be omitted from coinbase
when transmitting the proof. In fact, no block ids need to be transmitted. From these

observations, we estimate our scheme’s proof sizes for various parameterizations of m in
Table 1.

Concrete parameterization. To determine concrete values for security parameter m, we
focus on a particular adversarial strategy and analyze its probability of success. The attack
is an extension of the stochastic processes described in [19] and [24].

The experiment works as follows: m is fixed and some adversarial computational power
percentage g of the total network computational power is chosen; k is chosen based on
g according to Nakamoto [19]. The number of blocks y during which parallel mining will
occur is also fixed. The experiment begins with the adversary and honest parties sharing a
common blockchain which ends in block B. After B is mined, the adversary starts mining
in secret and in parallel with the honest parties on her own private fork on top of B. She
ignores the honest chain, so that the two chains remain disjoint after B. As soon as y
blocks have been mined in total, the adversary attempts a double spend via a NIPoPoW
by creating two conflicting transactions which are committed to an honest block and an
adversarial block respectively on top of each current chain. Finally, the adversary mines
k blocks on top of the double spending transaction within her private chain. After these
k blocks have been mined, she publishes her private chain in an attempt to overcome the
honest chain.

Table 1. Size of NIPoPoWs applied to Bitcoin today (450k blocks) for various values of m, setting

k =6.

m |[NIPoPoW size Blocks/Hashes
6 |70 kB 108 1440

15 [146 kB 231 2925

30 (270 kB 426 5400

50 (412 kB 656 8250
100{750 kB 1206 {15000
127952 kB 1530 {19050

We measure the probability of success of this attack. We experiment with various values
of m for y = 100, indicating 100 blocks of secret parallel mining. We make the assumption
that honest party communication is perfect and immediate. We ran 1,000, 000 Monte Carlo
executions % of the experiment for each value of m from 1 to 30. We ran the simulation
for values of computational power percentage ¢ = 0.1, ¢ = 0.2 and g = 0.3. The results
are plotted in Figure 6.

Based on this data, we conclude that m = 5 is sufficient to achieve a 0.001 probability
of failure against an adversary with 10% mining power. To secure against an adversary
with more than 30% mining power, a choice of m = 15 is needed.

6 Our experiment can be reproduced by running our code available under an open source MIT license at
https://github.com/dionyziz/popow/tree/master/experiment

21

Fig. 6. Simulation results for a private mining attacker with k according to Nakamoto and parallel mining
parameter y = 100. Probabilities in logarithmic scale. The horizontal line indicates the threshold probability
of [19] is indicated by the horizontal line.

> —— gq=01,2z=5
810 q=02.2=11
g —— q=03,2z=24
-2
> 10 — p=0.001
[(v]
0
Y103
O
[1v]
B 10—4
o
? 10°°
fo]
2
o
10°°
0 5 10 15 20 25 30

Security parameter m

11 Evaluation & Applications

In this section we evaluate the cost of NIPoPoWs when used in realistic blockchain applica-
tions. First we simulated the resources savings resulting from the use of a NIPoPoW-based
client compared to ordinary SPV. We model the arrival of payments in each cryptocoin
as a Poisson process and assume that the market cap of a cryptocoin is a proxy for usage.
Currently, a total of 731 cryptocurrencies are listed on coin market directories”. We narrow
our focus to the 80 cryptocurrencies that have their own PoW blockchains (i.e., no PoS)
with a market cap of over USD $100,000.

In Table 2 we show aggregate statistics about these 80 cryptocurrencies, grouped ac-
cording to the their PoW puzzle. While the entire chain in Bitcoin only amounts to 40 MB,
taken together, the 80 cryptocurrencies comprise 10 GB of proofs-of-work, and generate
10 MB more each day. In Table 3 we show the resulting bandwidth costs from simulating
a period of 60 days with m = 24, k = 6, with varying rates of payments received. For the
naive SPV client, the total bandwidth cost is dominated by fetching the entire chain of
headers, which the NIPoPoW client avoids. The marginal cost for naive SPV depends on
the number of blocks generated per day, as well as the transaction inclusion proofs asso-
ciated with each payment. The NIPoPoW based client provides the most savings when
the number of transactions per day is smallest, reducing the necessary bandwidth per day
(excluding the initial sync up) by 90%.

Multi-blockchain wallets. An application of our technique is an efficient multi-cryptocoin
client. Consider a merchant who wishes to accept payments in any cryptocoin, not just
the popular ones. The naive approach would be to install an SPV client for each known
cryptocoin. This approach would entail downloading the header chain for each cryptocoin,
and periodically syncing up by fetching any newly generated block headers. An alternative
would be to use an online service supporting multiple currencies, but this introduces
reliance on a third party (e.g. Jaxx and Coinomi rely on third party networks).

" https://coinmarketcap.com/

22

Table 2. Cost of header chains for all active PoW-based cryptocoins (collected from coinwarz.com)

Hash Coins|Size today|Growth rate
Scrypt 44 4.3 GB 5.5 MB / day

SHA-256 15 1.4 GB 937.0 kB / day
X11 5 581.1 MB |556.3 kB / day
Quark 3 647.9 MB |518.4 kB / day
CryptoNight| 2 199.0 MB [115.2 kB / day
EtHash 2 588.6 MB [921.6 kB / day
Groestl 2 300.3 MB |184.2 kB / day
NeoScrypt |2 310.6 MB |153.6 kB / day
Others 5 266.2 MB |311.1 kB / day
Total 80 8.5 GB 9.2 MB / day

Table 3. Simulated bandwidth of multi-blockchain clients after two months (Averaged over 10 trials each)

tx/ | Naive SPV NIPoPoW

day |Total (Daily) |Total (Daily) |Savings
100 [5.5 GB (5.5 MB)[31.7 MB (507 kB)|99% (91%)
500 |5.5 GB (5.7 MB)|68.2 MB (1.1 MB)[99% (81%)
1000(5.5 GB (6.0 MB)|99.1 MB (1.6 MB)|98% (73%)
3000[5.6 GB (7.0 MB)|192 MB (3.1 MB)[97% (56%)

A NTPoPoW-based client would not download the entire header chain, but would intead
only receive NIPoPoW proofs each time a payment is received. When a peer informs the
client about a payment, they include a block index ¢ and NIPoPoW proof of transaction
inclusion. The peer must then query all of their connected peers, requesting any better
better proof for the same predicate. After waiting a short time period for a response, the
client runs the verify-infix routine on all received proofs, and accepts the transaction if
the output is true. Although initially such proofs must be relative genesis, the client may
store the most recently-known (k-stable) blockhash for each cryptocoin, such that future
payments can include NIPoPoW proofs relative to that. Thus for popluar cryptocoins,
the NIPoPoW-based client downloads nearly every block header, like an ordinary SPV
client; but for cryptocoins used infrequently, the NIPoPoW-based client can skip over
most blocks.

Cross-chain ICOs. As an example use-case of our construction, we present the case of an
ICO in which tokens are distributed in one blockchain, but funds are raised in another.
It works as follows: There are two designated blockchains, the source and the destination
blockchain. The source is the blockchain where the fund-raising will take place, while
the destination is the blockchain where the newly issued tokens will be distributed and
subsequently exchanged. The destination blockchain must be smart-contract-enabled in
order to allow for the distribution of ERC-20-style [28] tokens. In addition, the smart
contracts on the destination blockchain must allow for programming the verification of
a NIPoPoW proof by including, for example, the appropriate hash functions. The source
blockchain must be NITPoPoW-enabled via one of the mechanism described in the upgrade
section. This setup allows the creation of NIPoPoWs about the source blockchain which
will be included in the destination blockchain. For example, a source blockchain can be
Litecoin and a destination blockchain Ethereum.

In order to run the ICO, the fund-raising entity first creates a designated account in the
source blockchain in which funds will be deposited. It then creates the ERC-20-style smart
contract in the destination blockchain. When someone wishes to participate in the ICO,
they transfer funds into the designated account on the source blockchain. Once she has
made the transfer and it becomes confirmed, the payer generates a NIPoPoW about the

23

transaction paying into the designated account. That NIPoPoW is then sent as a parameter
to a method call on the ICO smart contract on the destination blockchain. The method call
stores the proof and waits for a certain period of time for possible contestations, which can
be accepted and compared using the <,, mechanism previously described. If no contesting
proof is presented within the contestation period, the prover receives their respective ICO
tokens on the target blockchain. In order for only the rightful owner to be able to receive
the tokens, they are required to sign the destination address on the destination blockchain
using the private key corresponding to their source account used to make the payment
within the source blockchain.

24

Appendix

Our Appendix is structured as follows. In Section A, we illustrate gradual deployment
paths. One of our techniques allows adoption of our scheme without requiring miner con-
sensus. We term this technique a velvet fork in contrast to the classical soft and hard forks
which require approval by a majority of miners. This technique is a novel contribution
and may be of independent interest for other blockchain protocols. Section B gives the
lemmas and associated proofs showing how superchains are distributed. This provides the
necessary tools to show that the construction is optimistically succinct. Section C con-
tains the full formality of our attack against previous work, together with a proof that our
attack succeeds with overwhelming probability, given the correct strategy and protocol
parameters. Section D gives a formal proof of our security claims through a cryptographic
reduction. Section E includes the remaining proofs that were omitted from the body of the
paper with the goal of proving optimistic succinctness, a central result of our paper. It also
proves succinctness in more adversarial settings, which is another novel contribution, as
succinctness in any kind of adversarial setting has not been explored in previous work. We
conclude with Section F which includes experimental data of our Solidity implementation
for the ICO application.

A Gradual Deployment Paths

Our construction requires an upgrade to the consensus layer. We envision that new cryp-
tocurrencies will adopt our construction in order to support efficient light clients. However,
existing cryptocurrencies could also benefit by adopting our construction as an upgrade.
In this section we outline several possible upgrade paths. We also contribute a novel up-
grade approach, a “velvet fork,” which allows for gradual deployment without harming
unupgraded miners.

A.1 Hard Forks and Soft Forks

The obvious way to upgrade a cryptocoin to support our protocol is a hard fork: the block
header is modified to include the interlink structure, and the validation rules modified to
require that new blocks (after a “flag day”) contain a correctly-formed interlink hash.

The safety of a hard fork is debated [7], as they are not “forward compatible,”.
NIPoPoWs can also be implemented by a soft fork. A soft fork construction requires in-
cluding the interlink not in the block header, but in the coinbase transaction. It is enough
to only store a hash of the interlink structure. The only requirement for the NIPoPoWs to
work is that the PoW commits to all the pointers within the interlink so that the adversary
cannot cause a chain reorganization. If we take that route, then each NIPoPoW will be
required to present not only the block header, but also a proof-of-inclusion path within
the Merkle tree of transactions proving that the coinbase transaction is indeed part of the
block. Once that is established, the coinbase data can be presented, and the verifier will
thereby know that the hash of the interlink data structure is correct. Given that in Bitcoin
implementation there is a block size limit, observe that including such proofs-of-inclusion
will only increase the NIPoPoW sizes by a constant factor per block, allowing for the
communication complexity to remain polylogarithmic.

A.2 Velvet Forks

We now describe a novel upgrade path that avoids the need for a fork at all. The key idea
is that clients can make use of our scheme, even if only some blocks in the blockchain

25

include the interlink structure. Given that intuitively the changes we will propose require
no rule modifications to the consensus layer, we call this technique a velvet fork 8.

We require upgraded miners to include the interlink data structure in the form of a
new Merkle tree root hash in their coinbase data, similar to a soft fork. An unupgraded
miner will ignore this data as comments. We further require the upgraded miners to accept
all previously accepted blocks, regardless of whether they have included the interlink data
structure or not. Even if the interlink data structure is included and contains invalid data,
we require the upgraded miners to accept their containing blocks. Malformed interlink data
could be simply of the wrong format, or the pointers could be pointing to superblocks of
incorrect levels. Furthermore, the pointers could be pointing to superblocks of the correct
level, but not to the most recent block. By requiring upgraded miners to accept all such
blocks, we do not modify the set of accepted blocks. Therefore, the upgrade is simply a
“recommendation” for miners and not an actual change in the consensus rules. Hence,
while a hard fork makes new upgraded blocks invalid to unupgraded clients and a soft
fork makes new unupgraded blocks invalid to upgraded clients, the velvet fork has the
effect that blocks produced by either upgraded or unupgraded clients are valid for either.
In reality, the blockchain is never forked. Only the codebase is upgraded, and the data on
the blockchain is interpreted differently.

The reason this can work is because provers and verifiers of our protocol can check the
validity of the claims of miners who make false interlink chain claims. An upgraded prover
can check whether a block contains correct interlink data and use it. If a block does not
contain correct interlink data, the prover can opt not to use those pointers in their proofs.
The Verifier verifies all claims of the prover, so adversarial miners cannot cause harm by
including invalid data. The one thing the Verifier cannot verify in terms of interlink claims
is whether the claimed superblock of a given level is the most recent previous superblock
of that level. However, an adversarial prover cannot make use of that to construct winning
proofs, as they are only able to present shorter chains in that case. The honest prover can
simply ignore such pointers as if they were not included at all.

The velvet prover works as usual, but additionally maintains a realLink data structure,
which stores the correct interlink for each block. Whenever a new winning chain is received
from the network, the prover checks it for blocks that it hasn’t seen before. For those blocks,
it maintains its own realLink data structure which it updates accordingly to make sure it
is correct regardless of what the interlink data structure of the received block claims.

The velvet CT operator shown in Algorithm 9 is implemented identically as before,
except that instead of following the interlink pointer blindly it now calls the helper function
followUp, shown in Algorithm 10. It accepts block B and level y and creates a connection
from B back to the most recent preceding p-superblock, by following the interlink pointer
if it is correct. Otherwise, it follows the previd link which is available in all blocks, and
tries to follow the interlink pointer again from there. Finally, the velvet prover shown in
Algorithm 11 simply applies the velvet C1 operator and includes the auxiliary connecting
nodes within the final proof. No changes in the verifier are needed; note that in the
case of infix proofs the index of the block is used by the verifier; if this information is
not provided by the underlying blockchain headers, the index should be included in the
interlink structure.

8 After the first manuscript of the present paper was published on the ePrint archive, velvet forks were
subsequently explored in detail in the excellent follow-up work by Zamyatin et. al. [31]

26

Algorithm 9 The modified constructInnerChain that allows for a velvet fork.
1: function constructlnnerChain’(C, u, b, realLink, blockById)
2: B+ C[-1]

aux < [B]

™+ [B]

while B # b do

(B,aux’) «
followUp(B, p, realLink, blockByld)
T aux.append(aux’)
8: m.append(B)
9: end while
10: return 7, aux
11: end function

Algorithm 10 followUp produces the blocks to connect two superblocks in velvet forks.

1: function followUp(B, u, realLink, blockById)
2: aux < [B]

3: while B # Gen do

4: if B.interlink[u] = realLink[id(B)][x] then
5: id < B.interlink[y]

6: else > Invalid interlink
T id < B.interlink[0]

8: end if

9: B <« blockByld|[id]

10: aux < auxU {B}

11: if level(B) = p then

12: return B, aux

13: end if

14: end while
15: return B, aux

16: end function

Algorithm 11 The Prove algorithm for the NIPoPoW protocol, modified for a velvet fork.

1: function Prove',, 1 (C, realLink, blockByld)
2: size < |C| — (k—1)

3: 1 4 |C[size].interlink]|
4: b+ C[0] > Genesis block
5: I+0
6: for p = |realLink[C[—k — 1]]| down to 0 do
7 7, aux < constructlnnerChain’
(C[: —k], 4, b, realLink, blockByld)
8: if |w| > m then
9: b+ w[—m]
10: end if
11: I« ITU auz

12: end for
13: return I7
14: end function

27

Velvet NIPoPoWs preserve security. Additionally, if a constant minority of miners has
upgraded their nodes, then succinctness is also preserved as there is only a constant factor
penalty as proven in the following theorem.

Theorem 5. Velvet non-interactive proofs-of-proof-of-work on honest chains by honest
provers remain succinct as long as a constant percentage g of miners has upgraded, with
overwhelming probability.

Proof. From Theorem 10 we know that the proofs 7 contain only a O(polylog(m)) amount
of blocks. For each of these blocks, the velvet client needs to include a followUp tail of
blocks. Assume a percentage 0 < g < 1 of miners have upgraded with NIPoPoW support.
Then the question of whether each block in the honest chain is upgraded follows a Bernoulli
distribution. If the velvet proof were to be larger than A times the soft fork proof in the
number of blocks included, then this would require at least one of the followUp tails to
include at least A sequential unupgraded blocks. But since the upgrade status of each
block is independent, the probability of this occurring is g=, which is negligible in A. O

The reason we were able to upgrade using a velvet fork was because the changes we
made were helpful but verifiable by those looking at the chain. We would not have been
able to pull off this upgrade without modifications to the consensus layer in the sense that
the interlink data structure could not have been maintained somewhere independently of
the blockchain: It is critical that the proof-of-work commits to the interlink data structure.
Interestingly, the interlink data structure does not need to be part of coinbase and can be
produced and included in regular transactions by users (such as OP_RETURN transac-
tions). Thus, the miners can be completely oblivious to it, while users and provers make
use of the feature. Interested users regularly create transactions containing the most recent
interlink pointers so that they are included in the next block. If the transaction makes it
to the next block, it can be used by the prover who keeps track of these. Otherwise, if
it becomes part of a subsequent block, in which case some of the pointers it contains are
invalid, it can be ignored or only partially used.

The necessary changes needed in the various construction algorithms in order to sup-
port a velvet fork are shown in Algorithm 9, Algorithm 10, and Algorithm 11. Algorithm 9
defines the innerChain method, which replaces the upchain/downchain abstraction that
can be easily used in a fully upgraded chain.

The following theorem establishes the security of NIPoPoWs in velvet forks.

Theorem 5. Velvet non-interactive proofs-of-proof-of-work on honest chains by honest
provers remain succinct as long as a constant percentage g of miners has upgraded, with
overwhelming probability.

Proof. From Theorem 10 we know that the proofs 7 contain only a O(polylog(m)) amount
of blocks. For each of these blocks, the velvet client needs to include a followUp tail of
blocks. Assume a percentage 0 < g < 1 of miners have upgraded with NIPoPoW support.
Then the question of whether each block in the honest chain is upgraded follows a Bernoulli
distribution. If the velvet proof were to be larger than A times the soft fork proof in the
number of blocks included, then this would require at least one of the followUp tails to
include at least A sequential unupgraded blocks. But since the upgrade status of each
block is independent, the probability of this occurring is g2, which is negligible in A. O

Supporting clients with different beliefs. The interlink format does not depend on
parameters m, k. Therefore, it is not necessary to agree on a particular value of these
parameters. Instead, the choice of m and k can be a user-configurable parameter to clients.
Clients would send a particular m and k as part of their requirement to the prover.

28

B Superchain Quality Distributions

We now provide proofs that the definitions explored in Section 6 regarding the distributions
of superchains are attained.

Lemma 2 (Local goodness). Assume C contains only honestly-generated blocks in an
optimistic execution. For all levels u, for all constant § > 0, all continuous subchains C' =
Cli : j] with |C'| > m are locally good, local-goods(C’,C,), with overwhelming probability
mm.

Proof. Observing that for each honestly generated block the probability of being a u-
superblock for any level p follows an independent Bernoulli distribution, we can apply a
Chernoff bound to show that the number of superblocks within a chain will be close to its
expectation, which is what is required for local goodness. a

Lemma 3 (Multilevel quality). For all 4,0 < & < 0.5, chain C containing only
honestly-generated blocks in an optimistic execution has (6, k1) multilevel quality at level
w with overwhelming probability in k.

Proof. Identical. a

Lemma 4 (Superquality). For all u,d > 0, a chain C adopted in an optimistic execu-
tion has (6, m)-superquality at level . with overwhelming probability in m.

Proof. Let C' = C1* and let C* = C'[—m/ :] for some m' > m. Then let B € C*| and let
Xp be the random variable equal to 1 if level(B) > u and 0 otherwise. {Xp : B € C*} are
mutually independent Bernoulli random variables with expectation E(Xpg) = 27#|C*| |.
Let X =3 pceq Xp. Then X follows a Binomial distribution with parameters (m/,27H)
and note that |C*| = X. Then E(|C*{ |) = 27#|C*|. Applying a Chernoff bound on |C*] |
we obtain Pr[|C*| | < (1 — §)27#|C*]] < exp(—d227+~L|C*|). O

Lemma 5 (Optimistic superchain distribution). For any level u, and any 0 < § <
0.5, a chain C containing only honestly-generated blocks adopted by an honest party in
an execution with random network scheduling is (6,m)-good at level p with overwhelming
probability in m.

Proof. This is a direct consequence of Lemma 4 and Lemma 3. a

C Proof of attack on PoPoW

We now calculate the exact probability of success of the attack sketched in Section 7.
The attack is parameterized by parameters r, u which are picked by the adversary. p
is the superblock level at which the adversary will produce a proof longer than the honest
proof. The modified attack works as follows: Without loss of generality, fix block b to be
Genesis. The adversary always mines on the secret chain which forks off from genesis,
unless a superblock generation event occurs. If a superblock generation event occurs, then
the adversary pauses mining on the secret chain and attempts a block suppression attack on
the honest chain. The adversary devotes exactly 7 rounds to this suppression attack; then
resumes mining on the secret chain. We show that, despite this simplification (of fixing r)

29

which is harmful to the adversary, the probability of a successful attack is non-negligible
for certain values of the protocol parameters .

The adversary monitors the network for superblocks. Whenever an honest party diffuses
an honestly-generated p-superblock, at the end of a given round 7, the adversary starts
devoting their mining power to block suppression starting from the next round.

The block suppression attack works as follows. Let b be the honestly generated u-
superblock which was diffused at the end of the previous round. If the round was not
uniquely successful, let b be any of the diffused honestly-generated p-superblocks. Let b be
the tip of an honest chain C. The adversary first mines on top of Cp[—2]. If she is successful
in mining a block &', she continues extending the chain ending at b (to mine b’ and so
on). The value r is fixed, so the adversary devotes exactly r rounds to this whole process;
the adversary will keep mining on top of Cg[—2] (or one of the adversarially-generated
extensions of it) for exactly r rounds, regardless of whether b or b” have been found. At
the same time, the honest parties will be mining on top of b (or a competing block in the
case of a non-uniquely successful round). Again, further successful block diffusion by the
honest parties shall not affect that the adversary is going to spend exactly r rounds for
suppression. This attack will succeed with overwhelming probability for the right choice
of protocol values.

Theorem 6 (Double-spending attack). There exist parameters p,n,t,q, p, 6, with t <
(1—=96)(n—t), and a double spending attack against KLS PoPoW thatl succeeds with over-
whelming probability.

Proof. Recall that in the backbone notation n denotes the total number of parties, ¢
denotes the number of adversarial parties, ¢ denotes the number of the random oracle
queries allowed per party per round and p is the probability that one random oracle query
will be successful and remember that p = T/2% where T is the mining target and & is
the security parameter (or hash function bit count). Then f denotes the probability that
a given round is successful and we have that f =1— (1 — p)Q(”_t). Recall further that a
requirement of the backbone protocol is that the honest majority assumption is satisfied,
that is that ¢ < (1 — d)(n —¢) were § > 2f + 3¢, where € € (0,1) is an arbitrary small
constant describing the quality of the concentration of the random variables.

Denote a4 the secret chain generated by the adversary and ap the honest chain
belonging to any honest party. We will show that for certain protocol values we have that
Pr[|aat” | > |apt* |] is overwhelming,.

Assume that, to the adversary’s harm and to simplify the analysis, the adversary plays
at beginning of every round and does not perform adversarial scheduling. At the beginning
of the round when it is the adversary’s turn to play, she has access to the blocks diffused
during the previous round by the honest parties.

First, observe that at the beginning of each round, the adversary finds herself in one
of two different situations: Either she has been forced into an r-round-long period of
suppression, or she is not in that period. If she is within that period, she blindly performs
the suppression attack without regard for the state of the world. If she is not within that
period, then she must initially observe the blocks diffused at the end of the previous round
by the honest parties. Call these rounds during which the diffused data must be examined
by the adversary decision rounds. Let there be w decision rounds in total. In each such
decision round, it is possible that the adversary discovers a diffused u-superblock and
therefore decides that a suppression attack must be performed starting with the current
round. Call these rounds during which this discovery is made by the adversary migration

9 The attack could be further optimized, but we simplify it for exposition.

30

Fig. 7. The double spending attack. The top chain fork is wholly adversarially mined, while the bottom
is honestly adopted. Gray blocks are adversarially mined 0-blocks. Black blocks are p-superblocks.

Gen b

rounds. Let there be y migration rounds in total. The adversary devotes the migration
round to performing the suppression attack as well as » — 1 non-migration rounds after the
migration round. Call these rounds, including the migration round, suppression rounds.
In the rest of the decision rounds, the adversary will not find any p-superblocks diffused.
Call these secret chain rounds; these are rounds where the adversary devotes her queries
to mining on the secret chain. Let there be x secret chain rounds. If the adversary devotes
w decision rounds to the attack in total, then clearly we have that w = x + y. If the total
number of rounds during which the attack is running is s then we also have that s = x+ry,
because for each migration round there are r — 1 non-decision rounds that follow.

We will analyze the honest and adversarial superchain lengths with respect to w, which
roughly corresponds to time (because note that w > s/r, and so w is proportional to the
number of rounds). Let us calculate the probability psp (“superblock probability”) that a
decision round ends up being a migration round. Ignoring the negligible event that there
will be random oracle collisions, we have that psg = (n — t)gp2™".

Given this, note that the decision taken at the beginning of each decision round follows
independent Bernoulli distributions with probability psp. Denote z; the indicator random
variable indicating whether the decision round was a migration round. Therefore we can
readily calculate the expectations for the random variables x and y, as * = w —y, y =
> oiizi. We have E[z] = (1 — psp)w and E[y] = pgpw. Applying a Chernoff bound
to the random variables x and y, we observe that they will attain values close to their
mean for large w and in particular Pr[y > (1 4+ 0)E[y]] < exp(—%E [y]) and similarly
Prlz < (1—-0)E[z]] < exp(—%E[:E])7 which are negligible in w.

Given that there will be x secret chain rounds, we observe that the random variable
indicating the length of the secret adversarial superchain follows the binomial distribution
with xtq repetitions and probability p27#. We can now calculate the expected secret
chain length as Ef|la1" || = xtgp2™". Observe that in this probability we have given the
adversary the intelligence to continue using her random oracle queries during a round even
after a block has been found during a round and not to wait for the next round. Applying
a Chernoff bound, we obtain that Pr{la41* | < (1 — §)E[|Jast |]] < emp(—%EHaAT“ 0,
which is negligible in w (because we know that with overwhelming probability = > (1 —
0)(1 —psp)w).

It remains to calculate the behavior of the honest superchain. Suppose that a migration
round occurs during which at least one superblock B is diffused. We will now calculate
the probability ps, that the adversary is able to suppress that block after r rounds
by performing the suppression attack and cause all honest parties to adopt a chain not
containing B.

One way for this to occur is if the adversary has generated exactly 2 shallow blocks
(blocks which are not u-superblocks) after exactly r rounds and the honest parties having
generated exactly 0 blocks after exactly r rounds. This provides a lower bound for the
probability, which is sufficient for our purposes. Call ADV-WIN the event where the ad-
versary has generated exactly 2 shallow blocks after exactly r rounds since the diffusion

31

of B and call HON-LOSE the event where the honest parties have generated exactly 0
blocks after exactly r rounds since the diffusion of B.

The number of blocks generated by the adversary after the diffusion of B follows the
binomial distribution with r repetitions and probability p; g, where py, g denotes the proba-
bility that the adversary is able to produce a shallow block (“low block probability”) during
a single round. We have that prp = tgp(1 —27#). To evaluate Pr[ADV-WIN], we evaluate
the binomial distribution for 2 successes to obtain Pr[ADV-WIN] = @pi s(1—prE) 2
The number of blocks generated by the honest parties after the diffusion of B follows the
binomial distribution with r repetitions and probability f. To evaluate PrlHON-LOSE],
we evaluate the binomial distribution for 0 successes to obtain PrfHON-LOSE] = (1— f)".
Note that this is an upper bound in the probability, in particular because there can be
multiple blocks during a non-uniquely successful round during which a p-superblock was
generated.

Then observe that the two events ADV-WIN and HON-LOSE are independent and
therefore pgyp = PrIADV-WIN] Pr[HON-LOSE] = “-0p2 (1 — ppp)=2(1 — f)".

Now that we have evaluated pgp, we will calculate the honest chain length in two
chunks: The superblocks generated and adopted by the honest parties during secret chain
rounds, C1, and the superblocks generated and adopted by the honest parties during sup-
pression rounds, Co (and note that these sets of blocks are not blockchains on their own).

|C1| is a random variable following the binomial distribution with s(n —t)q repetitions
and probability p27#(1 — psyp). In the evaluation of this distribution, we give the honest
parties the liberty to belong to a mining pool and share mining information within a round,
an assumption which only makes matters for the adversary worse. We can now calculate
the expected length of C; to find E[|C1]|] = s(n — t)gp2 (1 — psup).- Applying a Chernoff
bound, we find that Pr[|C1]| > (1 4+ 6)E[|C1]]] < e:L"p(—%EHClH), which is negligible in s.

Finally, some additional pu-superblocks could have been generated by the honest parties
while the adversary is spending r rounds attempting to suppress a previous p-superblock.
These p-superblocks will be adopted in the case the adversary fails to suppress the pre-
vious p-superblock. As the adversary does not devote any decision rounds to these new
p-superblocks, they will never be suppressed if the previous p-superblock is not suppressed.
We collect these in the set Cy. To calculate |Ca|, observe that the number of unsuppressed
p-superblocks which caused an adversarial suppression period is |Ci|. For each of these
blocks, the honest parties spend r rounds attempting to form further u-superblocks on top.
The total number of such attemps is 7|C1|. Therefore, the number of further honestly gen-
erated p-superblocks attained during the |C1] different r-round periods follows a binomial
distribution with |Cy|rq(n — t) repetitions and probability p2~#. Here we allow the honest
parties to use repeated queries within a round even after a shallow success and to work in
a pool to obtain an upper bound for the expectation. Therefore E[|Ca|] = |C1|rq(n—t)p2~#
and applying a Chernoff bound we obtain that Pr[|C2| > (14 §)E[|Ca|]] < e:vp(—%EHCQH),
which is negligible in s and has a quadratic error term. We deduce that |Co| will have a
very small length compared to the rest of the honest chain, as it is a vanishing term in pu.

Concluding the calculation of the adversarial superchain, we get E[|lagt* || = E[|C1]]+
E[|Cal].

Finally, it remains to show that there exist values p,n,t,q,r, j1,d such that a E[|asT*
[| > (1+0)E[|apt* |]. Using the values p = 107°, ¢ = 1,n = 1000, t = 489, 1 = 25,7 = 200,
we observe that the honest majority assumption is preserved. Replacing these values into
the expectations formulae above, we obtain E[|ast* || =~ 1.457 % 10710 x w and E[lapt*
] ~ 1.424% 1079 xw, which result to a constant gap . Because the adversarial chain grows
linearly in w, the adversary only has to wait sufficient rounds for obtaining m blocks to

32

create a valid proof. Therefore, for these values, the adversary will be able to generate a
convincing PoPoW at some level p which is longer than the honest parties’ proof, even
when the adversary does not have a longer underlying blockchain. O

Remark. It is worth isolating the mistake in the security proof from the interactive
construction paper [15]. Suppose player B is honest and player A is adversarial and suppose
b, the LCA block, was honestly generated and suppose that the superchain comparison
happens at level p. Their security proof then correctly argues that there will have been
more honestly- than adversarially-generated p-superblocks after block b. Nevertheless,
we observe that the mere fact that there have been more honestly- than adversarially-
generated p-superblocks after b does not imply that |[T41* {b :}| < |71 {b :}|. The
reason is that some of these superblocks could belong to blocktree forks that have been
abandoned by B. Thus, the security conclusion does not follow. Regardless, their basic
argument and construction is what we will use as a basis for constructing a system that
is both provably secure and succinct under the same assumptions, albeit requiring a more
complicated construction structure to obtain security.

D Formal security treatment

Here, we give a formal treatment of the security proof which was sketched in Section 8.

Assume t adversarial and n total parties, each with ¢ PoW random oracle queries per
round. We will call a query to the RO p-successful if the RO returns a value h such that
h <27HT.

We define boolean random variables X}, Y, and Z}'. Fix some round r, query index
j and adversarial party index k (out of ¢). If at round ¢ an honest party obtains a PoW
with id < 27HT, set X} = 1, otherwise X} = 0. If at round r exactly one honest party
obtains a PoW with id < 27#T, set V' = 1, otherwise ¥} = 0. If at round r the j-th
query of the k-th corrupted party is p-successful, set Zi“jk = 1, otherwise Zf‘jk = 0. Let
Zl =3 4 2L, For aset of rounds S, let X#(S) =3, ¢ X, and similarly define
YH(S), ZH(S5).

Definition 11 (Typical execution). An execution of the protocol is (e,n)-typical if:
Block counts don’t deviate. For all 4 > 0 and any set S of consecutive rounds with
|S| > 2#nk, we have:

— (1 QE[XMS)] < X*(S) < (1+) E[XHS)] and (1 — €)E[Y™(S)] < YH(s).
— ZM(8) < (1 +) E[Z*(S)].

Round count doesn’t deviate. Let S be a set of consecutive rounds such that
ZH(S) > k for some security parameter k. Then |S| > (1 — 6)2'“1% with overwhelming
probability in k.

Chain regularity. No insertions, no copies, and no predictions [12] have occurred.

Theorem 7 (Typicality). Ezecutions are (e,n)-typical with overwhelming probability in
K.

Proof. Block counts and regularity. For the blocks count and regularity, we refer the
reader to [12] for the full proof.

Round count. First, observe that ijk ~ Bern(27#p) and these are jointly inde-
pendent. Therefore Z& ~ Bin(tg|S|,27#p) and [S| ~ NB(Zs.27#p). So E(|S]) = 2“%.
Applying a tail bound to the negative binomial distribution, we obtain that Pr[|5f <
(1 —e)E(|S])] € 2(®m). O

33

The following lemma is at the heart of the security proof that will follow.

Lemma 6. Suppose S is a set of consecutive roundsry...re and Cp is a chain adopted by

an honest party at round ro of a typical execution. Let C3 = {b € Cp : b was generated during S}.
Let pa,pp € N. Suppose CgT“B is good. Suppose C'y is a pa-superchain containing

only adversarially generated blocks generated during S and suppose that |C'y| > k. Then
21A|C!,| < F24B|CHHE |

Proof. From |C/y| > k we know that Zg > k. Applying Theorem 7, we conclude that
|S| > (1—6’)2“A$|Cj4|. Applying the chain growth theorem [12] we obtain that |C3| > (1—
€)f|S|. But from the goodness of C31#2, we know that [CZ1#8 | > (1—8)27#8|C3|. There-
fore |C§T#B | Z 2_H'B(1-5)(1-6)]0(1—6/)2”“4%|C:4| and so 2'LL'A|C£4| < %2#3“:21*#3
B O

Definition 12 (Adequate level of honest proof). Let 7 be an honestly generated proof
constructed upon some adopted chain C and let b € .

Then ' is defined as p/ = max{p : |[7{b:}1 | > max(m + 1, (1 — §)27#|x{b :}1H |)}.
We call i’ the adequate level of proof m with respect to block b with security parameters ¢
and m. Note that the adequate level of a proof is a function of both the proof = and the
chosen block b.

Lemma 7. Let w be some honest proof generated with security parameters 6, m. Let C be
the underlying chain, b € C be any block and p' be the adequate level of the proof with
respect to b and the same security parameters.

Then C{b :}1* = 7{b :}1* .

Proof. w{b :}t* C C{b :}1* is trivial. For the converse, we show that for all u* > 1/, we
have that in the iteration of the Prove for loop with p = p*, the block stored in variable
B precedes b in C.

Suppose p = p* is the first for iteration during which the property is violated. This
cannot be the first iteration, as there B = C[0] and Genesis precedes all blocks. By in-
duction hypothesis we see that during the iteration p = p* 4+ 1, B preceded b. From
the definition of 4/ we know that u/ is the highest level for which |z{b :}t* [1 :]| >
max(m, (1 —0)27"|x{b 31 [1:] |).

Hence, this property cannot hold for y* > p/ and therefore |rgp{b :}t#5 [1 :]| < m or
—local-goods(m{b :}1 p*[1 :],C,).

In case local-good is violated, variable B remains unmodified and the induction step
holds. If local-good is not violated, then |7{b :}1*" [1 :]| < m and so 71" [—m)] precedes
b. O

Lemma 8. Suppose the verifier evaluates w4 > wp in a protocol interaction where B is
honest and assume during the comparison that the compared level of the honest party is
pp. Let b = LCA(ma,mB) and let ply be the adequate level of mp with respect to b. Then

Wy > 1B-

Proof. Because pp is the compared level of the honest party we have 2#B|C{b :}HB | >
2¢8|C{b :}|. The proof is by contradiction. Suppose p’3 < pp. By definition, py is the
maximum level such that |rp{b :}1* [1 :]| > max(m, (1 — §)2 *|xp{b 31" [1]| |),
therefore pup does not satisfy this condition. But we know that |wg{b :}t#& [1 :]| > m
because p1p was selected by the Verifier. Therefore 2/5|Cp{b :}1#5 | < (1 —)|C{b :}|. But
11 satisfies goodness, so 2¢8|Cp{b :}1#5> (1—8)|C{b :}|. From the last two equations, we
obtain (1 — 6)|C{b:}| > 2B|C{b :}*5 |, which contradicts the previous equation. O

34

Theorem 1 (Security). Assuming honest magjority, the non-interactive proofs-of-proof-
of-work construction for computable k-stable monotonic suffix-sensitive predicates is secure
with overwhelming probability in k.

Proof. By contradiction. Let m = ki + ko + k3 and let k1, ks, k3 be polynomial functions of
k. Let @ be a k-stable monotonic suffix-sensitive chain predicate. Assume NIPoPoWs on ()
is insecure. Then, during an execution at some round r3, Q(C) is defined and the verifier V'
disagrees with some honest participant. Assume the execution is typical. V communicates
with adversary A and honest prover B. The verifier receives proofs w4, mp. Because B
is honest, mp is a proof constructed based on underlying blockchain Cp (with 7 C Cp)
which B has adopted during round r3 at which mp was generated. Furthermore, 74 was
generated at round rf < rj.

The verifier outputs =Q(Cp), and so Verify,,QnJC = =Q(Cp). Thus it is necessary that

74 > 7, otherwise, because Q is suffix sensitive, Verify® would have returned Q(Cp). We
now show that m4 > 7p is a negligible event.

Let b = LCA(m4,75) and let b* be the most recent honestly generated block in Cp
preceding b (and note that b* necessarily exists because Genesis is honestly generated).
Let the levels of comparison decided by the verifier be p4 and pp respectively. Let p/p
be the adequate level of proof mp with respect to block b. Call oy = a4 {b:}, o/ =
™ BT/’L/B {b }

We now show three successive claims: First, a4 and /] are mostly disjoint. Second,
a4 contains mostly adversarially-generated blocks. And third, the adversary is able to
produce this a4 with negligible probability.

Claim la: If p/; < pg then ay[l] and ap[l:]] are completely disjoint.

Applying Lemma 7 to Cp{b :}1"5 we see that Cp{b :}1"5= npts {b :} and so
s {b:}1] Nmatha {b:}1:]=0.

Claim 1b: If ug < iy then |aq[l] Nag) [1:]] < 24~ FAL,.

First, observe that, because the adversary is winning, therefore |a 4| > M~ HAm,
Suppose for contradiction that |a4[1] N apl [1 :]| > 2#B~#Ak;. This means there are
indices 1 < i < j such that |CpT#A [i : j]| > 2#B~FAk; but [Cpt#A [i : j]11*5B | = 0. But
this contradicts the goodness of Cpt#5. Therefore there are more than 245~ A (ky + k3)
blocks in a4 that are not in apg, and clearly also more than ko + k3 blocks.

From Claim la and Claim 1b, we conclude that there are at least ko 4+ k3 blocks after
block b in a4 which do not exist in ag. We now set by = LCA(Cp, ag).

Claim 2: At least k3 superblocks of a4 are adversarially generated.

We show this by showing that a4[ks + 1 :] contains no honestly mined blocks. By
contradiction, assume that the block v 4[i] for some i > k3 + ka4 1 was honestly generated.
This means that an honest party had adopted the chain a4[i — 1] at some round ro < r3.
Because of the way the honest parties adopt chains, the superchain a4[: 7 — 1] has an
underlying properly constructed 0-level anchored chain C4 such that C4 C ay[: i —1]. Let
J be the index of block by within C4. As g C C4, observe that [C4[j+1:]| > i—1 > ko+ky.
Therefore C4[: —(ka+k1)] 4 Cp. But C4 was adopted by an honest party at round r2 which
is prior to round rs during which Cp was adopted by an honest party. This contradicts
the Common Prefix [12] property with parameter ko. It follows that with overwhelming
probability in ks, the k3 = m — ko — k1 last blocks of the adversarial proof have been
adversarially mined.

Claim 3: A is able to produce a a4 that wins against ap with negligible probability.

Let b’ be the latest honestly generated block in a4, or b* if no such block exists in a4.
Let r1 be the round when b* was generated. Let j be the index of b*. Consider the set S
of consecutive rounds 7 ...73. Every block in ai4[—Fks3 :] has been adversarially generated

35

Fig. 8. Two competing proofs at different levels.

lo,| = m
L
I 1
}L{ b’
co-e[Feememe- F----OHF--O &,
b, \ b r, i
‘| L |
genesis b \‘ k, S, k,
O--F- \
b* \ !
N \
\\\\\ ‘\\ I'S
----- S e IS
\ . J
Gp
during S and |a4[—ks :]| = k3. Cp is a chain adopted by an honest party at round r3 and

filtering the blocks by the rounds during which they were generated to obtain Cg, we see
that C}g = Cp{b* :}. But chain CgT“E’ is good with respect to C3. Applying Lemma 6, we
obtain that with overwhelming probability 2/4|a4{b :}| < $2¢5|C51 pyl.

But |ap| > [Co1 iyg| and |aa{b' :}| > |aa| — ke, therefore 204|a 4| — ko < %2“53|a3|.
But || — k2 > k3, therefore %2'“‘/3|OJB| > k3 and so 2#8|ap| > 3ks Taking ky = k3, we
obtain 2HA|a 4| < %3k3 + kg = 2ks < 2"5|ag|. But this contradicts the fact that m4 > 74,
and so the claim is proven.

Therefore we have proven that 2¢5|rpt#s | > 28A|7hA | From the definition of up,
we know that 28 |rgthB | > 245 |mpt#5 |, and therefore we conclude that 248 |wgtH5 | >
QHA |7 4 A | .

Remark 1 (Variance attacks). The critical issue addressed by this security proof is to avoid
Bahack-style attack [3] where the adversary constructs “lucky” high-difficulty superblocks
without filling in the underlying proof-of-work in the lower levels. Observe that, while
setting m = 1 “preserves” the proof-of-work in the sense that expectations remain the
same, the probability of an adversarial attack becomes approximately proportional to the
adversary power if the adversary follows a suitable strategy (for a description of such
a strategy, see the parameterization section). With higher values of m, the probability
of an adversarial attack drops exponentially in m, even though they maintain constant
computational power, and hence satisfy a strong notion of security.

36

Remark. Intuitively, the attack of Section 7 is neutralized, because our prover takes
“goodness” of blockchains into account and the verifier does not compare proofs strictly
at the same level.

Remark. We have explored security in the synchronous model. We remark that the same
construction can work in a partially synchronous model by setting k' = 2k, where k' is the
security parameter of the partially synchronous model and k& is the security parameter in
the synchronous model. We leave the full treatment of this for future work.

D.1 Infix security

We observe that now that we have proven the modified suffix construction secure, the
security of infix proofs follows without any modifications in the infix construction. We
formally state this in the following corollary.

Corollary 1. Under honest majority, the infic NIPoPoW protocol (P, V') is secure for all
computable infix-sensitive k-stable monotonic predicates Q, except with negligible probabil-
iy i K.

Proof. Assume a typical execution. It suffices to show that the verifier will output the
same value Q(C) as some honest prover. Assume honest prover B has adopted a chain C
with @Q(C) = v and has provided proof mp. By Theorem 1 and because the evaluation of 7
is identical in the suffix-sensitive and in the infix-sensitive case, we deduce that b = 7[—1]
will be an honestly adopted block. Furthermore, due to the Common Prefix property [12],
b will belong to all honest parties’ chains and in the same position, as it is buried under
|X| = k Dblocks.

Because @ is infix-sensitive, it will be defined using a witness predicate D. Because)
is stable, we will have 3C" C C[: —k] : D(C'). But C' C 7p. Let S = ancestors(b) be the
ancestors evaluated by the verifier. As C' C S, therefore Q(C') = Q(S) = v. O

E More on succinctness

E.1 Proof of succinctness

We now prove the optimistic succinctness claims of Section 9.

Theorem 8 (Number of levels). The number of superblock levels which have at least
m blocks are at most log(|S]), where S is the set of all blocks produced, with overwhelming
probability in m.

Proof. Let S be the set of all blocks successfully produced by the honest parties or the
adversary. Each block id is generated by the random oracle, so Pr[id < 727#] = 27#. These
are independent Bernoulli trials. For each B € S, let X{; € {0,1} be the random variable
indicating whether the block belongs to level 4 and let D), indicate their sum, which is a
Binomial distribution with parameters (|S|,27#) and expectation E[D,] = |S|27".

For level p to exist in any valid proof, at least m blocks of level p must have been
produced by the honest parties or the adversary. We show that m blocks of level u =
log(]S]) are produced with negligible probability in m.

All of the X* are independent. We apply a Binomial Chernoff bound to the sum. We
have Pr[D,, > (14 A)E[D,]] < exp(—524 E[D,.]). But for this s we have that E[D,] = 1.

> ~97a
Therefore P2r[D” >14 4] < exp(—ﬁ—i). Requiring 1 + A = m, we get Pr[D, > m] <
exp(— (Tn;ll)), which is negligible in m. O

37

Theorem 9 (Large upchain expansion). Let C be an honestly generated chain and
let C' = Ct* 1 [i:i+ 4] with £ > 4m. Then |C't* | > m with overwhelming probability in
m.

Proof. Assume the (—1)-level superchain has 4m blocks. Because each block of level p—1
was generated as a query to the random oracle, it constitutes an independent Bernoulli trial
and the number of blocks in level u, namely 71#, is a Binomial distribution with parameters
(4m,1/2). Clearly Pr[|nt* | = m] < Pr[|#* | < m]. Observing that E[x1#] = 2m and
applying a Chernoff bound, we get Pr[|=t* | < (1 — %)Qm] < exp(—%Qm) which is
negligible in m.

This probability bounds the probability of fewer than m blocks occurring in the y level
restriction of (u — 1)-level superchains of more than 4m blocks. O

Lemma 9 (Small downchain support). Assume an honestly generated chain C and
let C' =Ct* [i :i+m]. Then |C'[t*1 | < 4m with overwhelming probability in m.

Proof. Assume the (u — 1)-level superchain had at least 4m blocks. Then by Theorem 9
it follows that more than m blocks exist in level p with overwhelming probability in m,
which is a contradiction. O

Theorem 10 (Optimistic succinctness). If all players are honest and the network
scheduling is random, non-interactive proofs-of-proof-of-work produced by honest provers
are succinct with the number of blocks bounded by 4mlog(|C|), with overwhelming proba-
bility in m.

Proof. Assume C is an honest parties’ chain. From Theorem 8, the number of levels in
the NIPoPoW is at most log(|C|) with overwhelming probability in m. First, observe that
the count of blocks in the highest level will be less than 4m from Theorem 9; otherwise
a higher superblock level would exist. From Corollary 5, we know that at all levels u the
chain will be good. Therefore, for each p superchain C the supporting (u — 1)-superchain
will only need to span the m-long suffix of the p-superchain above. For the m-long suffix
of each superchain of level u, the supporting superchain of level 1 — 1 will have at most
4m blocks from Lemma 9. Therefore the size of the proof is 4mlog(|C|). O

E.2 Succinctness of adversarial proofs

In the stronger adversarial setting, however, it is possible for the adversary to produce
large dummy (incorrect) proofs that expand the verification time; security will not be
hurt but it would take more time to complete verification. One may dismiss this as a
trivial denial of service attack and have a resource bounded verifier simply stop if it is
confronted with such a processing task. However, simply dismissing superpolylogarithmic
proofs is an incorrect strategy, as honest provers can produce such longer proofs in case
an adversarial miner harms the goodness of the blockchain.

It would therefore be useful for honest provers to have the ability to signal to the
verifier that such time expansion is indeed necessary because of an attack on superchain
quality, rather than because a malicious prover is simply sending long proofs that will
eventually be rejected. With such signaling mechanism, a resource bounded verifier can
distinguish between a denial of service attack that may be directed solely to it from a
denial of service attack that is launched by an attacker that has the ability to interfere
globally with superchain quality.

38

To facilitate the above signaling, we offer a simple generalization of our construction
that achieves this. Our extended construction allows the verifier to stop processing input
early, in a streaming fashion, thereby only requiring logarithmic communication complexity
per proof received. To achieve this, observe that honest proofs need to be large only if
there is a violation of goodness. However, goodness is not harmed when the chain is not
under attack by the adversarial computational power or network. Therefore, we require
the prover to produce a certificate of badness in case there is a violation of goodness in the
blockchain. This certificate will always be logarithmic in size and must be sent prior to the
rest of the proof by the prover to the verifier. Because the certificate will be logarithmic
in size even in the case of an adversarial attack on the chain, the honest verifier can stop
processing the certificate after a logarithmic time bound. If the certificate is claimed to
be longer, the honest verifier can reject early by deciding that the prover is adversarial.
Looking at the certificate, the honest verifier determines whether there is a possibility for
a lack of goodness in the underlying chain. If there’s no adversarial computational power
in use, the certificate is impossible to produce.

The certificates of badness are produced easily as follows. First, the honest verifier finds
the maximum level max-p at which there are at least m max-pu-superblocks and includes
it in the certificate. Then, because there is a violation of goodness there must exist two
levels p < g1/ such that 24/C1# | > (14 8)2¥'|CT* | in some part C of the honestly adopted
chain. But p/ — p < max-pu. Therefore, there must exist two adjacent levels p; < po which
break goodness but with error parameter (1 + §)1/™# In particular, it will hold that
28| C# | > (1 + §)/maxmopz|c#2 | This condition is direct for the prover to find and
trivial for the verifier to check and completes the construction. Note that it is possible
that a certificate of badness is produceable where two adjacent levels have more than
(14 8)1/™2%4 error even if there is no harm to global goodness; however, these certificates
cannot be produced when no adversarial power is in use. The algorithm to do this is shown
in Algorithm 12.

Algorithm 12 The badness prover which generates a succinct certificate of badness
1: function badness,, s(C)

2: M {p:|Ct | >m}\ {0}

3: p < 1/ max(M)

4 for ;1€ M do

5 for B € C1" do

6: C' + Ct {B:}[: m]

7 if |C'| = m then

8 > Sliding m-sized window

9: Cr et

10: if 2|C'| < (1 —§)?|C*| then

11: return C* > Chain is bad
12: end if

13: end if

14: end for

15: end for

16: return L > Chain is good

17: end function

Therefore, we augment the NIPoPoW construction as follows. The honest prover sends
a tuple of two items. The first item is empty if the second item is polylogarithmic in the
size of the chain; otherwise it is a certificate of badness. The second item is the NIPoPoW
proof as in the previous construction. The verifier processes only the first polylogarithmic

39

number of bytes from the incoming proof. If within that portion a certificate of badness
is found, it is checked for validity. If it is found to be valid, the whole proof is checked,
regardless of size. If it is found to be invalid or no certificate has been provided, then the
proof is rejected as invalid. We call the augmented construction certified NIPoPoWs.

Lemma 10 (Certified NIPoPoWs succinctness). If all miners are honest and the
network scheduling is random, certified non-interactive proofs-of-proof-of-work produced
by the adversary are processed in polylogarithmic time in the size of the chain by honest
verifiers, except with negligible probability in m.

Proof. Because all miners are honest and the network scheduling is random, therefore cer-
tificates of badness exist with negligible probability in m. Conditioning on the event that
certificates of badness do not exist, the honest verifier will reject the proof in polyloga-
rithmic time. o

We also establish that the modified construction does not harm security below. Security
is established in the general case where the adversary has minority mining power.

Theorem 11 (Certified NIPoPoWs security). Assuming honest majority, certified
non-interactive proofs-of-proof-of-work are secure, except with negligible probability in k.

Proof. We distinguish two cases: Either goodness has been violated; or it has not been
violated. Suppose that goodness has been violated. In that case, an honest prover will
include a certificate of badness in their proof and their proof will be processed by an
honest verifier.

In the case where goodness is not violated, all honest proofs will be logarithmic in size
as established by Lemma 10. Therefore, all honest proofs will be processed by an honest
verifier.

Under the condition that all honest proofs will be processed, the rest of the security
argument follows immediately from Theorem 1. O

We note that, compared to previous work [15], the adversarial model in which we have
proven our succinctness is stronger in that the adversary is able to produce proofs.

E.3 Infix succinctness

Having established the succinctness of the modified suffix construction, the succinctness
of the infix construction follows in the next corollary.

Corollary 2. The infiz NIPoPoW protocol (P,V) is succinct for all computable infix-
sensitive k-stable predicates Q in which the witness predicate D depends on a constant
number of blocks d.

Proof. Aslong as the number of blocks on which the predicate depends is polylogarithmic
(< d) with respect to the chain length, our proofs remain succinct. Specifically, the proof
size for the suffix has exactly the same size. Then the part of the proof that is of interest
is the output of the followDown algorithm. However, notice that this algorithm will on
average produce as many blocks as the difference of levels between B’ and FE, which
is at most logarithmic in the chain size. Hence the proof sizes will be in expectation
(m +|C’|) log(|C|), which remains succinct if |C'| € O(polylog(|C|)). O

40

F Cross-chain ICO evaluation

In order to support the cross-chain ICO application discussed in Section 11 and to present
concrete data about the cost of executing NIPoPoW-style proofs, we implemented the
NIPoPoW verifier algorithm as a Solidity smart contract'?. The contract consists of two
functions. The submit nipopow function is used by the provers to provide their proof
vectors. Instead of passing the block headers of the proof, the provers pass the hashes of
the block headers and the hashes of the interlink vector. The reason is that the full data of
the block header (especially the Merkle tree root) is only useful for the blocks of interest.
Thus, we reduce the amount of data needed for the proof by a factor of 2. The rest of the
parameters are used in the inclusion proof of the block. After confirming the validity of
the proof, the compare _proofs function is called between the current and the best proof.
If the current proof is better then it is assigned to the best proof in the contract’s storage.
The gas costs are summarized in Table 4. The $USD column represents the current price
of this much gas on Ethereum.

Table 4. Verifier contract functions

Function Data |Gas cost|$USD
compare_proofs|~8Kb [~5M [$4
submit_nipopow|~65Kb|~40M [$32

References

1. Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Routing attacks on cryp-
tocurrencies. In Security and Privacy (SP), 2017 IEEE Symposium on, pages 375-392. IEEE, 2017.
2. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller, An-
drew Poelstra, Jorge Timén, and Pieter Wuille. Enabling blockchain innovations with pegged
sidechains. URL: http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 2014.
3. Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power (draft). arXiv
preprint arXiv:1312.7018, 2013.
4. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference on Computer and communications security, pages
62-73. ACM, 1993.
5. Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll, and Edward W
Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 104-121. IEEE, 2015.
Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, 2016.
Vitalik Buterin. Hard forks, soft forks, defaults and coercion, 2017.
8. Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white
paper, 2014.
9. Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gorlick, and Mark Frieden-
bach. Strong federations: An interoperable blockchain solution to centralized third party risks. CoRR,
abs/1612.05491, 2016.
10. John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems, pages 251-260.
Springer, 2002.

11. Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable. In International
conference on financial cryptography and data security, pages 436—454. Springer, 2014.

12. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 281-310. Springer, 2015.

N

10 The source code of the smart contract is available under an open source MIT license at https://

github.com/dionyziz/popow/blob/master/experiment/contractNipopow.sol

41

13.
14.
. Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of work with
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.

26.
27.
28.
29.

30.
31.

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoin’s peer-
to-peer network. In USENIX Security Symposium, pages 129-144, 2015.
Maurice Herlihy. Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515, 2018.

sublinear complexity. In International Conference on Financial Cryptography and Data Security, pages
61-78. Springer, 2016.

Sergio Demian Lerner. Drivechains, sidechains and hybrid 2-way peg designs, 2016.

Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference on
the Theory and Application of Cryptographic Techniques, pages 369-378. Springer, 1987.

Andrew Miller. The high-value-hash highway, bitcoin forum post, 2012.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Tier Nolan. Alt chains and atomic transfers. bitcointalk.org, May 2013.

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 643-673. Springer, 2017.

Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM Symposium on
Principles of Distributed Computing, pages 315-324. ACM, 2017.

William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668-676, 1990.

Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint arXiv:1402.2009, 2014.

Paul Sztorc. Drivechain - the simple two way peg, November 2015. http://www.truthcoin.info/
blog/drivechain/.

Jason Teutsch, Vitalik Buterin, and Christopher Brown. Interactive coin offerings. Awailable at:
https: //people. cs. uchicago. edu/ ~teutsch/papers/ico. pdf, 2017.

Stefan ~ Thomas and FEvan Schwartz. A protocol for interledger payments.
https://interledger.org/interledger.pdf.
Fabian Vogelsteller and Vitalik Buterin. Erc-20 token standard. sept. 2017. URI:

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-tokenstandard.md, 2015.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. FEthereum Project
Yellow Paper, 151:1-32, 2014.

Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework, 2016.

A Zamyatin, N Stifter, A Judmayer, P Schindler, E Weippl, and W Knottenbelt. (short paper) a wild
velvet fork appears! inclusive blockchain protocol changes in practice.

42

