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Abstract. Blockchains allow the specification of contracts in the form
of programs that guarantee their fulfilment. Nevertheless, errors in those
programs can cause important, and often irretrievable, monetary loss.
General-purpose languages provide a platform on which contracts can
be built, but by their very generality they have the potential to exhibit
behaviours of an unpredictable kind, and are also not easy to read or
comprehend for general users.

An alternative solution is provided by domain-specific languages (DSLs),
which are designed to express programs in a particular field. This paper
explores the design of one DSL, Marlowe, targeted at the execution of
financial contracts in the style of Peyton Jones et al on blockchains. We
present an executable semantics of Marlowe in Haskell, an example of
Marlowe in practice, and describe the Meadow tool that allows users to
interact in-browser with simulations of Marlowe contracts.
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1 Introduction

This paper explores the design of a domain specific language, Marlowe,'? targeted
at the execution of financial contracts in the style of Peyton Jones, Eber and
Seward [16] on blockchains. In doing this, we are required to refine the model of
contracts in a number of ways in order to fit with a radically different context.

Consider the following example of an “escrow” contract so that we can explain
the motivation more concretely. The aim of this contract, written in functional
pseudocode in the style of [16] involves three participants: alice, bob and carol.
alice is to pay an amount of money to bob on receipt of goods from her. alice
pays the money into escrow controlled by carol.

There are two options for the money: if two out of the three participants agree
to pay it to bob, that goes ahead; if, on the other hand, two of the participants
opt to refund the money to alice, that is done instead.

The outer primitive When waits until the condition — its first argument
becomes true; in this case, the condition is that either two participants choose
refund or two participants choose pay. The second argument of the When is
itself another Contract, which is performed after the condition of the When has
been met, and it makes the payment if two participants chose pay, otherwise it
redeems previous money commitments.

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))
(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

We discuss this particular example in more detail in Marlowe in Section 3
below; but it already gives us an example of how traditional contracts are
fundamentally different from contracts that are meant to be run on top of
the blockchain. In the traditional model, enforcement of the contract is the
responsibility of the legal system. If alice does not pay the money into escrow,
or carol chooses to keep it for herself, then they can be sued for the money

* This work is part of the Cardano project and is supported by IOHK, https://iohk.io
! Named after Christopher Marlowe, the Elizabethan poet, dramatist and spy, who was
born and educated in Canterbury, en.wikipedia.org/wiki/Christopher_Marlowe

2 Marlowe is available from https://github.com/input-output-hk/scdsl
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(and probably damages), thus providing both legal and financial incentives for
compliance. On the other hand, in the decentralised blockchain model, where
there is no central authority, the contract needs to be enforced by design.

This means that we must require participants to commit money to cover
all possible expenditure in advance of the contract executing. In order to make
sure that participants continue to engage with a contract, we ensure urgency by
imposing timeouts: money is committed for a finite period only. We also impose a
timeout when waiting for a participant to make a commitment to ensure that the
contract does not become stuck even if one of the participants stops interacting
with it.

We make the following contributions in this paper.

— Designing a DSL for financial contracts on blockchains: Marlowe.
— Defining an executable, small-step semantics of Marlowe in Haskell.

— Making Marlowe an embedded DSL in Haskell. This extends the expressibility
of the language, as we can use all the facilities of Haskell in defining Marlowe
contracts; we achieve this by defining Marlowe as a Haskell data type.

— Developing the Meadow tool that allows users to interact with and simulate
the operation of Marlowe contracts and embedded Marlowe contracts.

Having established this model and its semantics we are able to do a number of
other things, which we discuss in the paper. We can explore how the language will
be implemented on an existing blockchain, such as Cardano, and our model has
shown us that we will need to consider how the evolution of a contract interacts
with the blockchain, with miners in the case of a ‘proof of work’-based chain, and
with users participating in contract execution. We can also perform analyses of
Marlowe contracts, based on its formal semantics.

In designing a language like Marlowe we are constrained by the blockchain
domain, but within that we do have a range of choices. For example, should we
base the language on a system with accounts, like Ethereum, or a UTxO-based
model as used by bitcoin? We examine this and other choices after introducing
the language and examples of its use.

The paper begins in Section 2 by introducing the Marlowe model, including
the assumptions made in designing it, the types of the principal functions and a
description of the DSL as an algebraic type, constructor by constructor. Section
3 revisits the escrow example, and shows how it is described using a combination
of Marlowe and Haskell constructs: that is, we use Marlowe as an embedded
DSL. Section 4 introduces Meadow, our tool for visualising and interacting with
Marlowe contracts. Section 5.1 reflects on the design rationale for Marlowe,
showing how it can be supported on a variety of blockchains, and Section 5.2
explores how Marlowe can be implemented. Section 6 surveys related work
and Section 7 enumerates the next steps for the project after drawing some
conclusions.
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Fig. 1. The context for a contract

2 The Marlowe model

The Marlowe domain-specific language (DSL) is modelled as an algebraic type in
Haskell, together with an executable small-step semantics. We start by looking
at the different types used by the model, and the assumptions about the infras-
tructure in which contracts will be run. We then we look at the Contract DSL
itself, and finally we give its semantics in Haskell. Section 3 revisits the “escrow’
example using the embedding of Marlowe as a DSL in Haskell.

i

2.1 The model types

A running contract interacts with its environment in two ways, as in Figure 1.

Observables First, it will need to observe different kinds of varying quantities
including, for example, the current time, the current block number and, random
numbers, as well as “real world” quantities like “the price of oil” or “the exchange
rate between currencies A and B”. As the examples illustrate, observables come
both from aspects of the blockchain (e.g. the current block number) and externally.
In the latter case, it will be necessary to agree a trusted oracle or beacon giving
the value.

Each instance of such an observable will be observed at a particular time
and in a particular context. We assume that the system infrastructure ensures
that these values are recorded on the blockchain to allow the computation to be
repeated for verification purposes.

It is assumed that at each step of the execution of the contract, the values
of observables will be available if needed, and these values are (together) given
by a value of type 0S (for “observable set”), where individual observations are
described in a “little language” for that purpose: Observation. Note that these
values are not determined by the participants in the contract, but rather by the
external environment in which the contract is run.

Inputs and Commitments On the other hand, at each step there are — potentially,
at least — a variety of inputs available from the participants themselves. These
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step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

the commitments
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redeemed, ...

the contract
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the state keeps the actions
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commitments enabled at
currently in place this step

context info:
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Fig. 2. The step function

include commitments of currency (or “cash”), redemption of commitments, and
claims of payments by a participant. Moreover, it is also possible for a participant
to input an arbitrary value (which we term a “choice”). The particular inputs at
a given step are described by a value of type Input.

While informally we might see a commitment to something as being indefinite,
it is important to realise that, on blockchain, a commitment needs to have a
timeout so that progress can be forced in a contract. After the timeout period
the cash can be refunded through the user creating a transaction to reclaim the
cash. Information about the commitments currently in force forms the State,
which can be modified at each execution step.

Actions Payments can be granted by using committed money, but they must be
manually redeemed by the recipient, in the same way that cash commitments
are redeemed when they expire. The effects of the contract in the blockchain are
represented by a list AS of Actions that is derived from the execution of each
step of the semantics.

Infrastructure The model makes a number of assumptions about the blockchain
infrastructure in which it is run.

— It is assumed that cryptographic functions and operations are provided by a
layer external to the system, and so they need not be modelled explicitly.

— We assume that time is “coarse grained” and measured by block number, so
that, in particular, timeouts are delimited using block numbers.

— Making a commitment is not something that a contract can perform; rather,
it can request that a commitment is made, but that then has to be established
externally: hence the input of (a set of) commitments at each step.

— The model manages the release of funds back to the committer when a cash
commitment expires (see discussion of the stepBlock function below).
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Computation Computation is modelled at two different levels.
The step function represents a single computation step and has this type:

step :: Input -> State -> Contract -> 0S -> (State,Contract,AS)

which is also illustrated in Figure 2. The step function is total, so that for every
contract a result of stepping is defined. However, for some kinds of contracts
commits, redeems or time-shifted contracts — it is possible that performing a step
produces the same contract as the result; we call these quiescent steps whereas
all others make progress. We use this distinction in the explanation that follows.
Execution of a contract will involve multiple blocks, with multiple steps in
each block. The computation at a single block is given by the stepBlock function:
this will call the stepAll function that calls step repeatedly until it is quiescent.
In addition to calling stepAll, stepBlock will first enable expired cash
commitments to be refunded and record, in the state, any choices made at that
step. The functions stepAll and stepBlock have the same type as step itself.

2.2 The Contract type

The type of contracts is given by the following Haskell data type:

data Contract =
Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |
Pay IdentPay Person Person Money Timeout Contract |
Both Contract Contract |
Choice Observation Contract Contract |
When Observation Timeout Contract Contract

Informally, this type provides a Null contract, which does nothing. The next
three constructs form contracts that do something, and then continue according
to another contract (which is one of the components of the original contract).
CommitCash will wait for a participant to make a commitment, RedeemCC allows
for a commitment to be redeemed, and Pay for a payment between participants
to be claimed by the recipient.

The remaining constructors form composite contracts from simpler compo-
nents: Both has the behaviour of both its components, Choice chooses between
two contracts on the basis of an observation, and When is quiescent until a
condition — i.e. an Observation — becomes true.

Additionally, many of the contracts have timeouts that also determine their
behaviour.

2.3 The step function

In this section, we explain the detailed behaviour of contracts by describing how
the step function operates on each of the constructors of the Contract type.
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— Null is the null contract; it will always be quiescent:
step _ st Null _ = (st, Null, [])

— CommitCash ident person val start_timeout end_timeout conl con2

For this contract to make progress,

e cither, before the timeout start_timeout, the user person makes a cash
commitment of value val and timeout end_timeout with the identifier
ident,

e or the timeout start_timeout is exceed:

step
commits
st
c0(CommitCash ident person val start_timeout end_timeout conl con2)
os
| cexe || cexs = (st {sc = ust}, con2, [])

| Set.member (CC ident person cval end_timeout) (cc commits)

= (st {sc = ust}, conl, [SuccessfulCommit ident person cvall)

| otherwise = (st, c, [1)
where ccs = sc st
cexs = expired (blockNumber os) start_timeout
cexe = expired (blockNumber os) end_timeout
cns = (person, if cexe || cexs
then ManuallyRedeemed
else NotRedeemed cval end_timeout)
Map.insert ident cns ccs
cval = evalMoney st val

ust

In the first case, a SuccessfulCommit action is generated and the contract
continues as conl; in the second case no action is generated and the contract
continues as con2. While neither case holds, the contract is quiescent, waiting
for the cash to be committed.

If the cash is committed successfully and the timeout end_timeout is reached,
then it is impossible to further spend the committed cash, and any unspent
funds can be reclaimed by person. This is enforced by the stepBlock function,
as noted above.

RedeemCC ident con (CC stands for cash commitment.) For this contract to
make progress, the creator of the cash commitment with identifier ident is
allowed to redeem the unspent funds in that commitment; the contract then
continues as con, and the action CommitRedeemed is produced.

step commits st c@(RedeemCC ident con) _ =

case Map.lookup ident ccs of
Just (person, NotRedeemed val _) ->
let newstate =

st {sc = Map.insert ident (person, ManuallyRedeemed) ccs} in

if Set.member (RC ident person val) (rc commits)
then (newstate, con, [CommitRedeemed ident person vall)
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else (st, c, [1)
Just (person, ManuallyRedeemed) ->
(st, con, [DuplicateRedeem ident person])
Nothing -> (st,c,[])
where
ccs = sc st

Committed cash can only be redeemed once, and an attempt to redeem it a
second time will produce a DuplicateRedeem action, continuing as con.

If the cash commitment with identifier ident has expired, it becomes possible

for the remaining funds to be redeemed by the committer; this can be
done by the stepBlock function processing the appropriate Input, and an
ExpiredCommitRedeemed action will be produced.

Once the commitment ident has expired and is redeemed, a RedeemCC ident con
contract will immediately evolve to con.

Pay idpay from to val expi con makes it possible, assuming that suffi-
cient funds are available, for to to claim a payment with id idpay of val
from from before the timeout expi. The contract continues as con.

step inp st c@(Pay idpay from to val expi con) os
| expired (blockNumber os) expi = (st, con, [ExpiredPay idpay from to cvall)
| right_claim =
if ((committed st from bn >= cval) && (cval >= 0))
then (newstate, con, [SuccessfulPay idpay from to cvall)
else (st, con, [FailedPay idpay from to cvall)
| otherwise = (st, c, [1)
where
cval = evalMoney st val
newstate = stateUpdate st from to bn cval
bn = blockNumber os
right_claim =
case Map.lookup (idpay, to) (rp inp) of
Just claimed_val -> claimed_val == cval
Nothing -> False

By ‘available’ we mean that sufficient commitments have been made and not
yet expired to cover the payment; in this case, the payment uses the currency
allocated by the cash commitments made by from that expire the earliest.
This contract will result in a FailedPay action if the funds are not available;
otherwise a SuccessfulPay action is generated.

Both conl con2 enforces the behaviour of both contracts con1 and con2.
step comms st (Both conl con2) os =
(st2, result, acl ++ ac2)
where
result | resl == Null = res2
| res2 == Null = resl
| otherwise = Both resl res2
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(stl,resl,acl) = step comms st conl os

(st2,res2,ac2) = step comms stl con2 os
Because the model is stateful and produces output actions, to make a step, it
is necessary to execute a single step of each of the contracts conl and con2
in sequence: first conl then con2.

— Choice obs conT conF behaves as either conT or conF depending on the
(Boolean) result of obs at the time that the observation is made, conT if it is
True and conF if False.

step _ st (Choice obs conT conF) os =
if interpretObs st obs os
then (st,conT, [])
else (st,conF,[])

— When obs expi con con2 This contract will not progress until obs is True
or until the current block number is greater than or equal to the one specified
by timeout expi. In case the timeout applies, the contract will continue
as con2, if the timeout does not apply and obs is True, then the contract
continues as con. Otherwise the contract is quiescent.

step _ st (When obs expi con con2) os
| expired (blockNumber os) expi = (st,con2,[])
| interpretObs st obs os = (st,con,[])
| otherwise = (st, When obs expi con con2, [])

We look next at an example of Marlowe in action.

3 Marlowe as an embedded DSL

In this section, we revisit the escrow example that we discussed briefly in the
introduction, and show how we can make Marlowe contracts that are easier
to write, read, and understand, by embedding them into Haskell code, that is,
taking advantage of the fact that Marlowe contracts are implemented as Haskell
terms to write Haskell programs that generate Marlowe code, instead of writing
Marlowe directly.

We used Haskell because it is the language in which Marlowe is implemented,
but it would be easy to embed Marlowe in any other language. It would only be
necessary to translate its primitives into a data type in that language. In Meadow
we use Fay [5], a subset of Haskell that we discuss in more detail in Section 4).

The example we use through this section implements an escrow contract, as
first introduced in Section 1. The escrow mechanism allows alice to deposit the
money into a contract, in a way that the money will only be released when two
out of three participants agree on whether bob has indeed given alice the item.

The escrow participant (carol) is supposed to be a neutral third party that
will decide in case of dispute. This way, if participants alice and bob are honest,
they will just agree on the result of the transaction and carol will not need to
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do anything. If alice and bob disagree, carol will be able to choose whether
the money must go to alice or to bob.

In our implementation we make things more specific: the money paid for the
item is 450 ADA, and it must be committed by alice before block 10; it will be
refunded to alice if there is no consensus before block 90.

We start by defining some Haskell functions. We can encapsulate identifiers
in functions to make the contract more readable. That way we can generate an
identifier for the cash commitment:

iCC1 :: IdentCC
iCC1 = IdentCC 1

An identifier for the payment:

iP1 :: IdentPay
iP1 = IdentPay 1

And we can create identifiers for all the participants:

alice, bob, carol :: Person
alice = 1
bob =2

carol = 3

We can also create a sub-contract that allows the money from the commitment
with identifier IdentCC 1 to be redeemed:

redeem_original :: Contract
redeem_original = RedeemCC iCC1 Null

Once redeemed, the contract continues as Null since we expect this to be the
last thing that is done. Each participant has a say on who deserves the money:
either alice deserves a refund, which we represent with the number 0; or bob
deserves a payment, which we represent with the number 1. Because there is
only one choice to make per participant, we use the same IdentChoice as their
participant id. We can define a function that returns an observation that is true
if and only if per has chosen the number ¢ for the choice IdentChoice per as
follows:

chose :: Int -> ConcreteChoice -> Observation
chose per ¢ = PersonChoseThis (IdentChoice per) per c

Then, we can easily write a function that returns an observation that is True if
and only if at least one of the participants per and per' has chosen the number
val as follows:

one_chose :: Person -> Person —> ConcreteChoice —> Observation
one_chose per per' val = (OrObs (chose per val) (chose per' val))
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Building on that, we can now write a function that returns an observation that
is True if and only if at least two out of the three participants p1, p2, and p3
have agreed in choosing the number ¢ as follows:

two_chose :: Person -> Person -> Person -> ConcreteChoice -> Observation
two_chose pl p2 p3 ¢ = 0r0Obs (AndObs (chose pl c) (one_chose p2 p3 c))
(AndObs (chose p2 c) (chose p3 c))

Finally, we can write the escrow contract, thus:

escrow :: Contract
escrow = CommitCash iCCl 1 (ConstMoney 450) 10 100
(When (OrObs (two_chose alice bob carol 0)
(two_chose alice bob carol 1))
90
(Choice (two_chose alice bob carol 1)
(Pay iP1 alice bob (AvailableMoney iCC1) 100
redeem_original)
redeem_original)
redeem_original)
Null

The outermost primitive CommitCash allows the alice to commit 450 ADA
before block 10, with the promise that money will be released on block 100 if
they are not claimed before that.

The next primitive, When, waits for one of three things to happen:

1. The observation became True because two out of three have chosen 0.
2. The observation became True because two out of three have chosen 1.
3. The observation remained False until 90 was published in the blockchain.

If the third option happens, the money is refunded. Otherwise, there is a
Choice that will immediately refund the money to alice unless two out of three
chose option 1; in the later case, Pay will give bob the opportunity to claim the
funds available in the commitment with identifier iCC1 before block 100 (by
using the identifier iP1 for the claim). If the funds are not claimed before block
100 they will also be refunded to alice.

Reflecting on the example, we can see that using Haskell definitions has made
the contract substantially more comprehensible. While our current implementa-
tion does not do this, it is possible to modify the embedding to support more
efficient operation, by preserving sharing in the host language. For example, if
we were to replace the repeated expression two_chose alice bob carol 1 by
a where clause,

escrow = ... (When (OrObs (two_chose alice bob carol 0)
chose_refund)
90
(Choice chose_refund ...

where chose_refund = two_chose alice bob carol 1
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then the repeated computation of the expression could be avoided.

4 Visualising and interacting with Marlowe contracts

For Marlowe to be usable in practice, users need to be able to understand how
contracts will behave once deployed to the blockchain, but without doing the
deployment. We can do that by simulating their behaviour off-chain, interactively
stepping through the evaluation of a contract in a browser. We do this in two
stages, first transforming an embedded contract (using features of Haskell) to a
pure Marlowe contract, and then interactively stepping through that contract.

To achieve this, and to aid Marlowe’s take-up usage by people that does
not know or are not familiar with its syntax, we have developed Meadow,
a web tool that supports the interactive construction, revision, and simula-
tion of smart-contracts written in Marlowe. The tool is publicly available in
the url: https://input-output-hk.github.io/scdsl/. In Figure 3, we pro-
vide a screenshot of Meadow in the middle of simulating the execution of
the “deposit incentive” contract available in the GitHub repository (in the
file: stc/DepositIncentive.hs) and in the examples section of Meadow (on the
bottom right part).

Meadow has been mainly written in Haskell and compiled to JavaScript
partially by the Haste compiler [6] and partially by GHCJS [13]; Meadow also
relies on the Blockly library [8] for providing a visual editor for smart contracts
written in Marlowe. Embedding support in Meadow is provided through a pruned
and bundled version of the Fay compiler [5], compiled to JavaScript using GHCJS.
All text fields that edit and present Meadow and Fay code are instances of
CodeMirror text editor [9].

Blockly’s editor allows the user to visualise and edit smart-contracts as
interlocking blocks that can be dragged and dropped like pieces of a jigsaw
puzzle. Meadow also provides functionality to generate syntactically correct and
formatted code (that is displayed in the upper right corner of the application),
and to convert the code back to its Blockly representation.

Additionally, Meadow allows the user to use Meadow’s Fay embedding from
within the browser.

The reason that we chose Fay instead of Haskell for Meadow is a technical
one: we wanted Meadow to be run completely inside the browser, because that
makes it easy to deploy, since the server is only required to send the page and not
to run any Marlowe-related computation. There exist compilers from Haskell to
JavaScript but most of them are not easy to bootstrap into JavaScript. Among
other reasons, they often rely on the API of the host OS to read and write files.

The Fay compiler, on the other hand, is mostly written in pure Haskell, and
it is not hard to compile to JavaScript by using GHCJS. Nevertheless, it does not
include a type checker, it relies in GHC’s type-checker; and it also tries to read
its Prelude from disk. We have worked around these issues by disabling type-
checking within Meadow embedded editor, and by embedding all the required
modules as constant strings in a modified version of the Fay compiler.
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Fig. 3. The Meadow tool simulating the “deposit incentive” contract.

In particular, Meadow includes a pruned copy of the Fay compiler, bundled
with its Prelude module, its foreign interface, and a module with the definitions
of the Marlowe primitives and a function to pretty-print Marlowe contracts. This
allows the user to compile and execute, inside Meadow, Fay code that generates
and prints a Marlowe contract. When the user opens the embedded editor, the
current Marlowe contract is embedded into a template of a Fay program that
prints it. The user is able to modify this code in the left panel of the editor
and use the advanced functionalities provided by Fay like, for example, bindings,
list-comprehensions, turing-complete functions definitions, etc.

When the user clicks the execute button, the Fay code is compiled to JavaScript
and evaluated; this causes the Marlowe contract generated by the execution of the
code to be written to the panel on the right. Generated contracts can then be sent
back to the main screen of Meadow, translated to Blockly, and their execution
can be simulated. The embedded editor also allows users to save the Fay code
to a file in their computers, to load code from a file in their computers, and to
temporarily hide the editor while keeping its contents in memory, even while the
compilation and execution process is being carried out in the background.
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Fig. 4. Detail of the interface for contract execution simulation.

The execution of complete contracts can be simulated block by block by using
the panel on the right (see Figure 4), which includes text fields to view and edit
the current block number, the state of the contract, the current inputs, and the
outputs from last block.

Additionally, to facilitate the introduction of inputs, Meadow provides two
different interfaces:

— The manual interface, provides a template for each of the four possible types
of input: commits, redeems, payment claims, and choices.

— The smart interface (shown in Figure 4), calculates the possible operations
that would make sense given the current inputs, state of the contract, block
number, and remaining contract; and it provides them in a table with most
of the parameters already filled in.

The smart interface is usually more convenient to use than the manual interface
since the later provides between 3 and 4 fields for each operation whereas the
former “guesses” the possible intentions of the user and usually can input new
operations with a single click (except for choices, which still may require the user
to input a number).
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In the next section, we re-examine the model and the Marlowe language,
looking at possible extensions, alternative design decisions and ways in which we
can formally analyse Marlowe contracts.

5 Design and Implementation

Marlowe is defined by its executable semantics, but to be deployed on blockchain
it will have to be implemented on an existing distributed infrastructure. We
intend to deploy it on IOHK’s Cardano infrastructure, but it can be implemented
in other systems too, as we explain now.

5.1 Design Rationale

Marlowe abstracts away from a number of concrete details of how blockchains
operate. In particular, it is agnostic between UTxO-based systems, such as
Bitcoin and Cardano SL, and account-based models such as Ethereum; it can
be implemented on “push” or “pull”’-based systems, and can be executed on or
off-chain.

UTzO and accounts Transactions on Bitcoin are made by spending the (as
yet) unspent outputs of previous transactions (‘unspent transaction outputs’
or UTxOs). The chain need not maintain any state, such as the current value
owned by any particular participant: such account information is implicit and
external to the Bitcoin blockchain. On the other hand, the Ethereum model
explicitly keeps track of account values, and this information needs to be kept on
chain. Of the two, the UTxO model is simpler and requires less support from the
implementation of the chain itself.

Interaction modality Contracts can be conceived of as acting in two ways. In a
push model, contracts are seen to make things happen. In the case of blockchain,
this would include making payments or transactions take place. Alternatively, in
a pull model, contracts enable certain things, such as transactions, to happen
but the transactions need to be effected by an external actor. The pull model
makes fewer demands on the blockchain implementation than the push model.

Layered design and sidechains Some chains have a layered design, in particular
Cardano [11]. The Cardano Settlement Layer (SL) is to support settlement of
transactions but nothing more complicated, whereas the Computation Layer (or
CL) supports more powerful general computations over the chain. Moreover, the
Cardano roadmap [3] envisages the possibility of computation taking place, in
part at least, on a sidechain rather than on the main chain itself, which may
support only the SL. Other off-chain approaches include the Lightning network,
overlaid on blockchains (usually Bitcoin) and the channels of seternity [1].
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5.2 Compilation
We have designed Marlowe assuming that each contract would be compiled into

— one or more on-chain programs and
— a client side program or interface that has a limited number of choices to be
made at each point in time (including an interface for the observables).

The contracts implemented in the Marlowe language have an implicit interface
defined for what would correspond to the client side of a distributed application,
as shown by the interactive interface. Of course, we probably do not want to give
a user a programmatic interface but an actual application with user interface.
A contract written in Marlowe could also be potentially compiled to a smart-
contract written in Ethereum. This could be done in two ways: it could be
compiled so that a smart contract represents a single instance of the Marlowe
contract with a fixed set of participants; alternatively it would be possible to
create a generic contract with an extra “instantiate” operation that sets up a new
Marlowe contract instance with a given set of participants (set of public keys).

Transactions In principle, we can directly translate each operation in the model
(i.e: cash commitment, payment claim, choice, or redemption) into a separate
transaction in the blockchain. In the Ethereum model this would work in the
same way that is simulated by Meadow: several operations can be issued in
parallel and the blockchain subsystem will automatically apply them in some
order and integrate them into the next block.

Another approach would be to use a UTxO model with continuations in which
a UTxO represents a contract. In this model, an operation would correspond
to a transaction that spends a UTxO and creates (at least) a new UTxO that
represents the contract after the operation.

Usually, in the UTxO model, it is necessary that a UTxO is in the blockchain
in order for another transaction to be able to spend it. This could potentially
limit the number of operations that can be applied in a single block to one, which
would make infeasible the approach of using the same UTxO to represent several
instances of the same contract (since it would not scale). On the other hand, it
would prevent non-determinism and, with it, it would remove the possibility of
race-conditions. A change to the state of a contract before a transaction (and
its corresponding operation) is accepted in the blockchain would invalidate the
transaction and require the user to issue it again.

Even if we only allow one transaction per block, it would still be possible to
combine several transactions off-chain and to issue a transaction that contains
several operations. However, that would require an offline protocol independent
from the blockchain and it would require participants to collaborate.

Nevertheless, there already exists in Bitcoin a mechanism that allows the
combination of several chained transactions within a single block while using
the UTxO model, even though it is used to solve a different problem and it is
not widely spread yet. This is the case of ”child pays for parent”, which allows
the recipient of an unpublished transaction to issue another transaction that
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spends the former, with the aim of including enough fees for both transactions to
have enough incentive to be included by a miner in a block (in which case both
transactions would be included in the same block).

The same mechanism could be used for allowing miners to aggregate several
transactions that act as a chain in the same block. The clients would only need
to monitor the transaction pool in order to send transactions that can be chained
with the existing ones.

Cost The Cardano platform has a notion of cost, and Marlowe contracts will
potentially incur costs of two kinds: The cost of a single transaction execution
(e.g. a single Plutus validator), and the cost of the whole contract, which may
consist of many transactions.

Even in Ethereum this distinction is important because single contract execu-
tion is limited by gas (and is thus finite), whereas the life of the whole contract
may be unbounded and consist of an indefinite number of transactions. So far
we are assuming contracts defined in Marlowe to be finite in both aspects.

Recording information on chain Inputs and values of observables need to be
recorded somehow, and this raises the potential issue about bloating the chain
with data. In general, it will only be necessary to store a signed hash value of
the observable, and this will keep data usage bounded; but the full information
may still need to be posted in case of dispute.

General computations If we have contracts that involve, for example, the oil price
then we may need to convert a published price in USD into ADA, using a value
for the prevailing USD/ADA exchange rate. This will require a computation:
in this case, a multiplication. If Marlowe is to be stand-alone then we need to
extend it with arithmetic and other operations, but we expect Marlowe to be
embedded in a suitable language that provides these facilities.

6 Related work

Blockchains are executed in a replicated form by parties who cannot be guaranteed
not to be hostile, either by directly trying to change the contents of the chain, or
through trying to affect other properties of the chain by indirect means (such as
swamping honest parties with work). Programming on the blockchain therefore
needs to be constrained in some ways, since it has to be amenable to replication
or verification within a reasonable time if the security and integrity of the chain
are to be preserved. We look at representatives of the main approaches now; we
discuss some of these in more detail in an earlier paper [12].

Split contracts An early work on smart contracts raises the issue that practical
contractual situations may well not be amenable to complete formalisation, hence
giving rise to a split [14] between an automated part and a non-automated part
that mediates, for example, real assets. We can foresee that this approach will be
needed for Marlowe too, if it achieves read-world adoption.
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Bitcoin script One approach to this is to choose mechanisms such as bitcoin
script [17] which are manifestly non-Turing complete. A bitcoin script, written
in a Forth-like language, is essentially linear: it can branch, but the language
contains neither looping constructs nor recursion. It is therefore straightforward
not only to see that scripts will terminate, but also to give an accurate estimate
of the time taken to execute a script.

Ethereum On the other hand, the Ethereum system [19] provides a Turing-
complete language for the EVM virtual machine, and a higher-level programming
language, Solidity, that compiles into EVM code. However, EVM and Solidity
programs are constrained post hoc by two mechanisms: program execution must
be paid for using ‘gas’ proportional to the effort expended, and a set of ad hoc
limits on program execution, e.g. on stack size.

Nzt In Nxt [15], programmability of the system is provided through a “fat”
high-level API, which is accessible from Nxt clients through a REST interface.
The API provides functionality supporting various kinds of transactions. The
core software itself does not support any form of scripting language; rather, users
are expected to work with the built in transaction types and transactions that
support some 250 primitive operations; these can be “scripted” in a client (only)
using a binding to the API, which is available, for instance, in JavaScript.

Multiple languages A common feature of many blockchain platforms is that
they provide multiple scripting languages. As we noted earlier, Ethereum can
be programmed at the EVM level as well as by using the high-level Solidity
language. Tezos [7] supports the stack-based, strongly-typed, functional language
Michelson, but also provides a high-level language, Liquidity, that compiles into
Michelson. Liquidity is also functional and strongly typed, but provides more
constructs in a more familiar syntax, namely that of a subset of OCaml.

The eeternity system [1] provides multiple languages and VMs [18]: the
functional language Sophia (akin to Reason) and the Functional Typed Warded
Virtual Machine (FTWVM) for safe “system level programming”, the language
Varna and the HLM for simple contracts, and a (port of) Solidity and the EVM
for compatibility with Ethereum. In a similar way, Cardano provides support for
IELE [10], a rational reconstruction of the EVM, and thus for Solidity too.

Domain-specific languages A domain-specific language or DSL is a high-level
language designed to work in a specific field or domain. The intention is that
because the users will know about the field, the constructs of the language can
be designed to be meaningful to them, and also that, because of its nature, the
DSL need not include all the features of a general purpose language. Removing
this clutter and having the remaining operations directly reflect the application
area is intended to make the language more accessible to domain experts who do
not necessarily see themselves as programmers.

Stand-alone DSLs have the advantage of providing appropriate, domain-level
error messages when things go wrong, but suffer the disadvantage of having
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to be implemented from scratch. An alternative to this are embedded DSLs
(EDSLs), which provide a “little language” for the particular domain embedded
within a general-purpose host language. This means that parts of the host
such as arithmetical expressions, or list idioms — can be used to extend the
expressibility of the DSL. A notable example of this is the financial contracts
language described by Peyton Jones and his collaborators [16], which is embedded
in Haskell. Marlowe is similar to the DSL in [16] in the use of Haskell embedding,
in that the functionality provided is similar, in the use of composable combinators,
and in the declarative style that allows users to describe what needs to be enforced
and not how. However the two approaches differ in other aspects like the lack of
Marlowe’s reliance on the legal system for enforcement, its support for multiple
party contracts, its explicitness of choices, and its use of a pull model.

Findel The Findel project [2] examines financial contracts on the Ethereum
platform, based on the seminal [16], and the authors note that payments need to
be bounded; this is made concrete in our account by our notion of commitments.
They take no account of commitments or timeouts as our approach does, but it
should be noted that the Ethereum platform is more powerful than the one that
we target in this paper.

7 Conclusions and Future Work

In this paper, we have presented Marlowe, a DSL for financial contracts on
blockchains, based on earlier work on contracts [16], together with examples of
its use. We have seen that to make this operational on blockchain we need to
add commitments and timeouts, and to design a semantics that reflects these.
As we saw in Section 5.1, Marlowe has been designed to make as few demands
as possible on the underlying blockchain: it can be implemented on UTxO or
account-based blockchains, for example.

We have also presented Meadow, that allows users to interact with and simu-
late the operation of Marlowe contracts, contributing to the potential adoptability
of the system. We have also described the design rationale for Marlowe, and
sketched ways in which it can be implemented.

We plan to continue the work with Marlowe in a number of directions. We will
continue to develop the core language, for example considering the automation
of generation of identifiers for commitments and others. We will then implement
this version of Marlowe in Cardano, compiling from Marlowe contracts to on
chain contracts and users’ wallets, and deploy it in a test network to observe and
measure its behaviour in practice.

Building on the operational semantics given here, we will develop analyses of
Marlowe contracts — such as to show that contracts cannot generate FailedPay
actions in certain circumstances. We will also develop QuickCheck-style property-
based testing [4], and properties developed here can become candidates for fully
fledged verification in a formalisation of the semantics of Marlowe.
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