Hydra: Fast Isomorphic State Channels

Manuel M. T. Chakravarty', Sandro Coretti!, Matthias Fitzi', Peter Gazi!, Philipp Kant!,
Aggelos Kiayias?, and Alexander Russell®

TOHK. firstname.lastname@iohk.io.
2University of Edinburgh and IOHK. akiayias@inf.ed.ac.uk.
3University of Connecticut and IOHK. acr@cse.uconn.edu.

Abstract

State channels are an attractive layer-two solution for improving the throughput and latency
of blockchains. They offer optimistic offchain settlement of payments and expedient offchain evo-
lution of smart contracts between multiple parties without imposing any additional assumptions
beyond those of the underlying blockchain. In the case of disputes, or if a party fails to respond,
cryptographic evidence collected in the offchain channel is used to settle the last confirmed state
onchain, such that in-progress contracts can be continued under mainchain consensus.

A serious disadvantage present in current layer-two state channel protocols is that existing
layer-one smart contract infrastructure and contract code cannot be reused offchain without
change.

In this paper, we introduce Hydra, an isomorphic multi-party state channel. Hydra simplifies
offchain protocol and smart contract development by directly adopting the layer-one smart
contract system, in this way allowing the same code to be used both on- and off-chain. Taking
advantage of the extended UTzO model, we develop a fast off-chain protocol for evolution of
Hydra heads (our isomorphic state channels) that has smaller round complexity than all previous
proposals and enables the state channel processing to advance on-demand, concurrently and
asynchronously.

We establish strong security properties for the protocol, and we present and evaluate ex-
tensive simulation results that demonstrate that Hydra approaches the physical limits of the
network in terms of transaction confirmation time and throughput while keeping storage require-
ments at the lowest possible. Finally, our experimental methodology may be of independent
interest in the general context of evaluating consensus protocols.

1 Introduction

Permissionless distributed ledger protocols suffer from serious scalability limitations, including high
transaction latency (the time required to settle a transaction), low throughput (the number of
transactions that can be settled per unit of time), and excessive storage required to maintain the
state of the system and its transaction history, which can be ever growing.

Several solutions have been proposed to mitigate these problems by adapting the details of the
underlying ledger protocols. Such direct adaptations for scalability are often referred to as layer-one
solutions.

Layer-one solutions face an inherent limitation, however, as settlement remains a cumbersome
process that involves the participation of a large, dynamic set of participants and requires exchange

of significant amounts of data. An alternative approach to improve scalability, which is our emphasis
in this work, is layer-two (sometimes referred to also as offchain) solutions that overlay a new
protocol on top of the (layer-one) blockchain. Layer-two solutions allow parties to securely transfer
funds from the blockchain into an offchain protocol instance, settle transactions in this instance
(quasi) independently of the underlying chain, and safely transfer funds back to the underlying
chain as needed.

Offchain solutions have the advantage that they do not require additional trust assumptions
about the honesty of parties beyond those of the underlying blockchain, and that they can be very
efficient in the optimistic case where all participants in the offchain protocol instance behave as
expected. In particular, such an instance operates among a small number of parties that commu-
nicate with each other directly, and in a way that allows them to forget about recent transactions
as soon as they respectively update (and secure) their local states.

The most prominent offchain scalability solution is the concept of payment channels [9, 33, 16].
A payment channel is established among two parties, allowing them to pay funds back and forth
on this channel; in the optimistic case, this can take place without notifying the layer-one protocol.
Payment channels have been extended to payment-channel networks, e.g., the Bitcoin Lightning
Network [33]. Such networks, in principle, allow for offchain fund transfers among any two parties
that are connected via a path of payment channels.

As a drawback, in a traditional payment-channel network a transaction between two parties
that do not share a direct payment channel requires interaction among all parties on a payment-
channel path between them (so-called intermediaries), even in the optimistic case. Virtual payment
channels, e.g., Perun [19], address this and do not require interaction with intermediate parties (in
the optimistic case).

State channels [5] extend the concept of payment channels to states in order to support smart
contracts. State-channel networks [21, 15, 29] likewise extend the concept of state channels to
networks (analogously to the network extension discussed above). Still, these networks only allow
for the establishment of pairwise state channels over the network.

Multi-party state channels were introduced in [31] together with a high-level description of a
respective protocol. A multi-party state channel allows a set of parties to maintain a “common”
state whereon they can compute without interacting with the blockchain (in the optimistic case).

In [18], the notion of multi-party virtual state channels was introduced, state channels among
multiple parties that can be setup without blockchain interaction (given that a connected graph of
pairwise state channels among the parties already exists); and a respective protocol was presented.

Despite the above significant advances, important challenges remain, both in terms of establish-
ing high offchain processing performance that approximates the physical limits of the underlying
network as well as in the sense of imposing significant conceptual and engineering overhead over
layer-one as the offchain contract state must be verified in a non-native representation; the rea-
son is that the state of the contracts evolved in a specific state channel needs to be isolated and
represented in a form that permits it to be manipulated both offchain and by the onchain smart
contract scripting system in case of an offchain dispute. This lead to designs where the computa-
tions performed offchain are no longer in the representation used by the ledger itself; i.e., they are
non-native. For example, the sample Solidity contract of [31] serializes the state into a bytes32
array. The smart contracts themselves need to be adapted correspondingly. In other words, the
scripting system of the ledger and of state channels attached to the ledger diverge in a substantial
way, effectively imposing two distinct scripting systems.

Hydra. In Hydra, we tackle both problems, offchain processing performance and state represen-
tation, with the introduction of isomorphic multi-party state channels. These are state channels
that are capable of expediently reusing the exact state representation of the underlying ledger and,
hence, inherit the ledger’s scripting system as is. Thus, state channels effectively yield parallel,
offchain ledger siblings, which we call heads—the ledger becomes multi-headed. The creation of
a new head follows a similar commitment scheme as is common in state channels. However, once
a state channel is closed, either cooperatively or due to a dispute, the head state is seamlessly
absorbed into the underlying ledger state and the same smart contract code as used offchain is
now used onchain. This is possible, even without a priori registration of the contracts used in a
head, because one and the same state representation and contract (binary) code is used offchain
and onchain.

Not every blockchain scripting system is conducive to isomorphic state channels. Building them
requires to efficiently carve out arbitrary chunks of blockchain state, process them independently,
and be able at any time to efficiently merge them back in. We observe that the Bitcoin-style UTxO
ledger model [6, 34] is particularly well suited as a uniform representation of onchain and offchain
state, while simultaneously promising increased parallelism in transaction processing inside multi-
party state channels. While the main restriction of the plain UTxO model has traditionally been
its limited scripting capabilities, the introduction of the Extended UTzO model (EUTzO) [13] has
lifted this restriction and enabled support for general state machines. Extended UTxO models
form the basis for the smart contract platforms of existing blockchains, such as Cardano [14] and
Ergo [17]; hence, the work presented in this paper would also be of immediate practical relevance.

Just like the UTxO ledger representation, the EUTxO ledger representation makes all data
dependencies explicitly without introducing false dependencies — in other words, two transactions
do only directly or indirectly depend on each other if there is an actual data dependency between
them. This avoids the over-sequentialization of systems depending on a global state. Hence, the
length of the longest path through the EUTxO graph coincides with the depth complexity of the
workload entailed by transaction processing and validation. This is the optimum as far as parallel
transaction processing is concerned [10].

Exploiting the EUTxO ledger representation, we are able to design an offchain protocol with
unparalleled performance. In particular, the Hydra head protocol is capable of offchain processing
asynchronously and concurrently between different members of the head, utilizing merely 3 rounds
of interaction for updates. In contrast previous works in multiparty state channels either required
a synchronous operation or imposed 4 rounds to facilitate sequentializing inputs and organizing the
offchain state.

In more detail, in Hydra, a set of parties coordinates to commit a set of UTxOs (owned by the
parties) into an offchain protocol, called the head protocol. That UTxO set constitutes the initial
head state, which the parties can then evolve by handling smart contracts and transactions among
themselves without blockchain interaction—in the optimistic case.

Due to the isomorphic nature of Hydra heads, transaction validation, including script execution,
proceeds according to the exact same rules as onchain. In fact, the exact same validation code
can be used. This guarantees that onchain and offchain semantics coincide, leading to significant
engineering simplifications. In case of disputes or in case some party wishes to terminate the offchain
protocol, the parties decommit the current state of the head back to the blockchain. Ultimately, a
decommit will result in an updated blockchain state that is consistent with the offchain protocol
evolution on the initially committed UTxO set. To reduce mainchain overhead, the mainchain is

oblivious of the detailed transaction history of the head protocol that lead to the updated state.
Crucially, the time required to decommit is independent of the number of parties participating in
a head or the size of the head state. Moreover, the decommit process is designed such that, when
the latest state in the head is very large, the head state can be decommitted in small (but parallel)
chunks. Finally, Hydra allows incremental commits and decommits, i.e., UTxOs can be added to
and removed from a running head without closing it.

Cross-head networking. In this paper, we focus solely on the analysis of the Hydra head protocol;
nevertheless, the existence of multiple, partially overlapping heads off the mainchain can give rise to
cross-head communication (as in the Lightning Network [33]), using similar techniques to [21, 18].

Online participation requirements. The Hydra head protocol is geared towards the scenario
where the participants who are required to validate transactions are online and responsive. As in
e.g. [33], being offline will prevent progress, and also participation in a potential onchain dispute
resolution. The scenario where a number of parties are regularly offline is also of interest but not
in scope for the current version.

Performance evaluation methodology and experimental results. As transaction-processing per-
formance is the fundamental motivation for layer-two protocols, these properties of the Hydra
protocol are particularly important to establish. While transactions-per-second (TPS) is an imme-
diate figure of merit for deployed systems, it is sensitive to changes in the underlying hardware or
network; in particular, it is an unreliable means for experimentally comparing various algorithmic
proposals unless the experiments precisely duplicate the computing environment which is also sen-
sitive to user inputs. To avoid these difficulties and second-guessing specific usage scenarios, we
adopt a “baseline relative” approach to establish performance guarantees, which demonstrates that
Hydra achieves performance that approaches the theoretical optimum for any consensus protocol.
Our experimental results are obtained by simulation, which additionally permits a high-precision
exploration of the specific design choices adopted by the Hydra protocol. We consider two major
types of baselines elaborated below.

The universal baseline. As mentioned above, we begin by considering a baseline reflecting the weak-
est obligations of any consensus algorithm. Specifically, the universal baseline merely con-
siders the cost of processing each transaction and disseminating the transactions across the
network; observe that any iterated consensus algorithm that yields full state at each node
must necessarily carry out both operations. We demonstrate that Hydra achieves efficiency
that rivals even this ideal for most scenarios. As this protocol-independent baseline is one
against which any iterated consensus algorithm can be compared, near optimality with respect
to this baseline implicitly demonstrates that Hydra is competitive with any other consensus
layer. In our experiments we compare Hydra with the universal baseline for a number of
different scenarios that reflect user behavior.

The unlimited baseline. The second baseline focuses on the characteristics of the protocol itself. In
particular it asks how does the protocol implementation compare to an idealized execution of
the protocol by a set of nodes that experience no local contention for resources. This baseline
comparison is meant to be complementary to the universal baseline and helps answer the
following question. Whenever there is divergence between the universal baseline and the
actual consensus protocol execution in the experiment, how much of this divergence is to
be attributed to the inherent cost of running the consensus protocol vs. the costs arising
due to contention for resources within each node. Even good consensus protocol designs are

expected to diverge from the universal baseline: after all, consensus is a difficult problem to
solve. However good protocol designs should always approximate their unlimited baseline. In
our experiments we demonstrate that this is the case for Hydra in all the different scenarios
of our experimental setup.

Ezxperimental results. We conducted detailed simulations of head performance under a variety
of load and networking scenarios, including both geographically localized heads and heads with
participants spread over multiple continents, incurring large network delays. We found that our
head protocol, in the optimistic case, achieves progress that rivals the speed and throughput of
the network in all configurations; this is aided by the concurrency afforded by the partial-only
transaction ordering permitted by the graph-structure underlying UTxO ledgers.

Comparison to previous work. A number of previous works study state channel protocols.
The protocol by Miller et al. [31] allows a set of parties to initiate a smart contract instance (state)
onchain and take it offchain. The state can then be evolved offchain without chain interaction in the
all-honest case. By concurrently handling disputes in a shared contract, dispute resolution remains
in O(A) time, where A is the settlement time for an onchain transaction. The offchain protocol
proceeds in phases of 4 asynchronous rounds where a leader coordinates the confirmation of new
transactions among the participants in the offchain protocol. Similarly to Hydra, the protocol
allows to add/remove funds from the offchain contract while it is running,.

The protocol by Dziembowski et al. [18] is based on pairwise state channels and allows the
instantiation of a multi-party state channel among any set of parties that are connected by paths
of pairwise state channels—the instantiation of the multi-party channel does not require any inter-
action with the mainchain. The offchain protocol proceeds in phases of 4 synchronous rounds to
confirm new transactions without the need for a coordinating leader.

The Hydra offchain protocol is fully asynchronous; in the optimistic case, transactions are
confirmed in 3 (asynchronous) rounds independently of each other, and without having to involve a
leader. A leader is only required for the resolution of transaction conflicts and for periodic “garbage
collection” that allows the protocol to maintain state size independent of the size of the transaction
history.

In comparison to prior solutions cited above, Hydra provides faster confirmation times in the
offchain protocol; this is an advantage enabled by the structural organization of transactions in
the EUTxO model, whereas prior protocols are hindered by a monolithic state organization. An
additional advantage over [31] and [18] is that those fix the set of contracts that can be evolved in a
given state channel at channel creation time; Hydra does not require such an a priori commitment:
new contracts can be introduced in a head after creation in the native EUTxO language of the
underlying blockchain. Another significant difference to [18] is that their protocol calls for parties
to lock funds on the mainchain on behalf of other parties—caused by asymmetries induced by
the composition along paths of pairwise state channels, whereas in Hydra as well as in [31], the
parties only need to lock funds on behalf of themselves. Finally, Hydra is isomorphic and thus
reuses the existing smart contract system and code for offchain computations. This is not the case
for [31] and [18]. For example, if we consider the sample Solidity contract of [31], it would have
to implement a state machine capable of executing EVM bytecode to achieve contract (system)
reuse—and hence, isomorphic state channels.

We note that there is also a large number of non-peer reviewed proposals for state-channel-based
solutions such as [28, 15, 29, 3]. These proposals come with various degrees of formal specification

and provable security guarantees and their systematization is outside of our current scope; it suffices
to observe that none of them provides the isomorphism property or comes with a complete formal
security analysis and an experimental evaluation.

Two concepts related, but distinct, from state channels are sidechains (e.g., [7, 24, 26]) and non-
custodial chains (e.g., [32, 27, 20, 4]), including plasma and rollups. Sidechains enable the transfer of
assets between a mainchain and a sidechain via a pegging mechanism, with the mainchain protected
from sidechain security failures by a “firewall property”; the sidechain has its own consensus rules
and, contrary to a state channel, funds may be lost in case of a sidechain security collapse. Non-
custodial chains, on the other hand, delegate mainchain transaction processing to an untrusted
aggregator and are capable, as in state channels, to protect against a security failure. Nevertheless,
the aggregator is a single-point-of-failure and its corruption, in a setting where a large number
users are served by the same non-custodial chain, gives rise to the “mass-exit” problem (see e.g.,
[20]); note that state channels, in contrast, can scale to a large number of users via state channel
networks [21] without requiring many users per channel. We note finally that work in progress on
optimistic rollups, reported in [4], claims a feature similar to our isomorphic property, nevertheless
without the latency benefits of our approach as their settlement still advances with the underlying
mainchain.

2 Preliminaries

2.1 Multisignatures

A multisignature scheme [25, 30] is a tuple of algorithms MS = (MS-Setup, MS-KG, MS-AVK,
MS-Sign, MS-ASig, MS-Verify) such that IT < MS-Setup(1*) generates public parameters; with these
in place, (vk,sk) - MS-KG(II) can be used to generate fresh key pairs. Then

e 0 < MS-Sign(Il, sk, m) signs a message m using key sk;
e 7 + MS-ASig(II, m,V,S) aggregates a set S of signatures into a single, aggregate signature &.

The algorithm avk «— MS-AVK(IL, V) aggregates a tuple V of verification keys vk into a single, aggre-
gate verification key avk which can be used for verification: MS-Verify(II, avk,m,) € {true, false}
verifies an aggregate signature under an aggregate verification key. In the following, we often make
the parameter II implicit in the function calls for better readability.

Intuitively, the security of a multisignature scheme guarantees that, if avk is produced from
a tuple of verification keys V via MS-AVK| then no aggregate signature & can pass verification
MS-Verify(avk, m, &) unless all honest parties holding keys in V signed m. A full treatment appears
in Appendix A.

2.2 Extended UTxO model & state machines

The basis for our fast isomorphic state channels is Bitcoin’s UTxO ledger model [6, 34]. It arranges
transactions in a directed acyclic graph structure, thus making the available parallelism explicit:
any two transactions that are not directly or indirectly dependent on each other can be processed
independently.

V6
2, e 14,
(2,v3) A N (14, v7)

P8 .
- (6, va) pa

—o
(9, vs)

Figure 1: Example of a plain UTxO graph

UTx0O. Transactions in an UTxO ledger contain a set of inputs and outputs, where outputs
lock an amount of cryptocurrency, such that only authorized inputs of subsequent transactions can
connect and consume those funds. This arrangement results in graphs, such as the one in Figure 1,
where the boxes represent transactions with (red) inputs to the left and (black) outputs to the
right.

Each output locks some cryptocurrency, which can be transferred via a subsequent transaction
by consuming that output with a new input. The set of dangling (unconnected) outputs are the
unspent transaction outputs (UTzOs) — there are two of those in Figure 1. In addition to the
locked currency, each output also comes with a predicate v, called its validator. In Figure 1, we
use pairs (n,v) to indicate that a given output locks n cryptocurrency with validator predicate v.

Where outputs carry validators, each input comes with a redeemer value p. To determine
whether a given input of the currently validated transaction tr is permitted to connect to a, as
of yet, unspent output, we determine whether the validator predicate v of that output applies
for the redeemer p; or more formally, we check that v(p,o) = true, where the wvalidation context
o represents some properties of the transaction that the spending input belongs to, such as the
transaction’s cryptographic hash value. For example, the validator may require the redeemer to be
a signature on the transaction hash contained in the context o for a specific key pair, such that
only the owner of the private key can spend an output locked by that validator.

Extended UTxO. The Extended UTzO Model (EUTzO) [13] preserves this structure, while
adding support for more expressive smart contracts and, in particular, for multi-transaction state
machines, which serve as the basis for the mainchain portion of the work presented here. This
additional expressiveness is achieved by two changes to the plain UTxO scheme outlined before:

e Qutputs carry, in addition to a cryptocurrency value n and a validator v, now also a datum 9,
which can, among other things, be used to maintain the state of long running smart contracts.

e The validation context o is extended to contain the entire validated transaction tx as well as
the UTxOs consumed by the inputs of that transaction.

In this extended model, evaluation of the validator predicate implies checking v(p,d, o) = true.
Besides maintaining contract state in J, the fact that the validator can inspect the entire validated
transaction tx through o enables validators to enforce that contract invariants are maintained across
entire chains of transactions.

Although formal results about EUTxO are rather recent, extended UTxO models already form
the basis for the smart-contract platforms of existing blockchains — in particular, Cardano [14]
and Ergo [17]. Consequently, the Hydra head protocol as presented in this paper is of immediate
practical relevance to these existing systems.

User-defined tokens. In addition to the basic EUTxO extension, we generalize the currency
values recorded on the ledger from integral numbers to generalized user-defined tokens [1]. Put
simply (sufficient to understand the concepts in this paper), values are sets that keep track how
many units of which tokens of which currency are available. For example, the value {Coin
{Coin — 3},¢ > {t1 —> 1,ta — 1}} contains 3 Coin coins (there is only one (fungible) token Coin for
a payment currency Coin), as well as (non-fungible) tokens ¢; and t5, which are both of currency c.
Values can be added naturally, e.g.,

{Coin — {Coin — 3},c+> {t; +— 1, ta > 1}}
+ {Coin — {Coin > 1},c+> {t3 +— 1}}
= {Coin — {Coin — 4},c— {t1 — 1, ta — 1,3 — 1}} .

In the following, & is the empty value, and {¢1,...,t,} :: ¢ is used as a shorthand for {¢ — {t; —
L...,ty, — 1}}

The EUTxO ledger consists of transactions: Transactions are quintuples tx = (I, O, valrorge, 7, K)
comprising a set of inputs I, a list of outputs O, values of forged/burned tokens valporge, a slot range
7 = (Tmin, Tmax), and a set of public keys K. Each input ¢ € I is a pair consisting of an output refer-
ence out-ref (consisting of a transaction ID and an index identifying an output in the transaction)
and a redeemer p (used to supply data for validation). Each output o € O is a triple (val,v,?)
consisting of a value val, a validator script v, and a datum . The slot range r indicates the slots
within which tx may be confirmed and, finally, I are the public keys under which tx is signed.

In order to validate a transaction tx with input set I, for each output o = (val, v, d) referenced by
an i = (out-ref, p) € I, the corresponding validator v is run on the following inputs: v(val,d, p,0),
where the validation context o consists of tx and all outputs referenced by some i € I (not just o).
Ultimately, tx is valid if and only if all validators return true.

State Machines. A convenient abstraction for EUTxO smart contracts spanning a sequence
of related transactions are state machines. Specifically, we adopt constraint emitting machines
(CEM:s) [13]. These are based on Mealy machines and consist of a set of states Scgy, a set of inputs

Icpm, a predicate final gy, : Scem — Bool identifying final states, and a step relation s = (s, tx%),
which takes a state s on an input 7 to a successor state s’ under the requirements that the constraints
tx= are satisfied.

We implement CEMs on a EUTxO ledger (the mainchain) by representing a sequence of CEM
states as a sequence of transactions. Each of these transactions has got a state-machine input icgy
and a state-machine output ocgy, where the latter is locked by a validator vegy, implementing the
step relation. The only exceptions are the initial and final state, which have got no state-machine
input and output, respectively.

More specifically, given two transactions tx and tx/, they represent successive states under

s — (s, tx7) iff

™t

val val’

Figure 2: Transactions representing successive states in a CEM transition relation s SN
(s',tx=). Fields val and val' are the value fields of the state-machine outputs and j is the
additional data.

e state-machine output ocgy = (val, Veew,s) of tx is consumed by the state-machine input
iruy = (out-ref, p) of tx’, whose redeemer is p = i (i.e., the redeemer provides the state-
machine input) and

e cither final,,(s') = true and ¢z’ has no state-machine output, or ojy,, = (val’, Vg, s') and
tx’ meets all constraints imposed by tx=.

Sometimes it is useful to have additional data p provided as part of the redeemer, i.e., p = (i, p).
A state transition of the described type is represented by two connected transactions as shown in
Fig. 2. For simplicity, state-machine inputs and outputs are not shown, with the exception of the
value fields val and val’ of the state-machine output.

3 Protocol Overview

The Hydra protocol provides functionality to lock a set of UTxOs on a blockchain, referred to as
the mainchain, and evolve it inside a so-called offchain head, independently of the mainchain. At
any point, the head can be closed with the effect that the locked set of UTxOs on the mainchain
is replaced by the latest set of UTxOs inside the head. The protocol guarantees full wealth preser-
vation: no generation of funds can happen offchain, and no responsive honest party involved in a
head can ever lose any funds other than by consenting to give them away.

The advantage of head evolution from a liveness viewpoint is that, under good conditions, it
can essentially proceed at network speed, thereby reducing latency and increasing throughput in
an optimal way. At the same time, the head protocol provides the same smart-contract capabilities
as the mainchain.

To avoid overloading with technical details, the main body of the paper presents a simplified
version of Hydra to convey the basic concepts and ideas of the new protocol. Also in the overview,
we focus on the simplified protocol and outline the differences of the full protocol in Section 3.4. A
detailed description of the simplified protocol is given in Sections 4— 6, and Appendix B. The full
protocol is described in Appendix C.

3.1 The big picture

To create a head-protocol instance, any party may take the role of an initiator and ask a set parties
(including himself), the head members, to participate in the head by announcing the identities of
the parties.

Each party then establishes pairwise authenticated channels to all other parties or—if this is
not possible—aborts the protocol setup.!

The parties then exchange, via the pairwise authenticated channels, some public-key material.
This public-key material is used both for the authentication of head-related onchain transactions
that are restricted to head members (e.g., a non-member is not allowed to close the head) and for
multisignature-based event confirmation in the head.

The initiator then establishes the head by submitting an nitial transaction to the mainchain
that contains the head parameters and forges special participation tokens identifying the head
members by assigning each token to the public key distributed by the respective party during the
the setup phase. The initial transaction also initializes a state machine (see Fig. 3) for the head
instance that manages the “transfer” of UTxOs between mainchain and head.

Once the initial transaction appears on the mainchain, establishing the initial state initial, each
head member can attach a commit transaction, which locks (on the mainchain) the UTxOs that
the party wants to commit to the head.

The commit transactions are subsequently collected by the collectCom transaction causing a
transition from initial to open. Once the open state is confirmed, the head members start running
the offchain head protocol, which evolves the initial UTxO set (the union over all UTxOs committed
by all head members) independently of the mainchain. For the case where some head members fail
to post a commit transaction, the head can be aborted by going directly from initial to final.

The head protocol is designed to allow any head member at any point in time to produce,
without interaction, a certificate for the current head UTxO set. Using this certificate, the head
member may advance the state machine to the closed state.

Once in closed, the state machine grants parties a contestation period, during which each party
may (one single time) contest the closure by providing the certificate for a newer head UTxO
set. Contesting leads back to the state closed. After the contestation period has elapsed, the
state machine may proceed to the final state. The state machine enforces that the outputs of the
transaction leading to final correspond exactly to the latest UTxO set seen during the contestation
period.

3.2 The mainchain state machine

The mainchain part of the Hydra protocol fulfills two principal functions: (1) it locks the mainchain
UTxOs committed to the head while the head is active and (2) it facilitates the settlement of the
final head state back to the mainchain after the head is closed. In combination, these two functions
effectively result in replacing the initial head UTxO set by the final head UTxO set on the mainchain
in a manner that respects but does not persist the complete set of head transactions.

The state machine (Fig. 3) implementing the mainchain protocol comprises the four states
initial, open, closed, and final, where the first two realize the first function (locking the initial UTxO
set) and the second two realize the second function (settling the final UTxO set on the mainchain).

State machines inherently sequentialize all actions that involve the machine state. This simplifies
both reasoning about and implementing the protocol. However, steps that could otherwise be taken
in parallel now need to be sequentialized, which might hurt performance. For the cases where this
sequentialization would severely affect protocol performance, we employ a (to our knowledge) novel

"We generally assume that mechanisms for establishing pairwise authenticated channels are in place, e.g., by
means of a public-key infrastructure.

10

contest
close
collectCom | open |~ " closed | fanout

[initial | final |~
3 " commit 1xs

abort - e

Figure 3: Mainchain state diagram for the simple version of the Hydra protocol.

technique to parallelize the progression of the state machine on the mainchain.

We use this technique to parallelize the construction of the initial UTxO set of the head.
Without parallelization, all n head members would have to post their commit transactions (their
portion of the initial UTxO set) in sequence, requiring a linear chain of n transactions, each
for one state transition at a time. Instead, we make the state machine consume all n commit
transactions in a single state transition. In Fig. 3, we represent this in the following way: the
transaction representing state initial connects to the transaction representing state open not just
via the collectCom state transition, but also via a set of commit transactions (one for each head
member).

This requires some extra care. We want to ensure that each head member posts exactly one
commit transaction and that the open transaction faithfully collects all commit transactions. We
gain this assurance by issuing a single non-fungible token to each head member—we call this the
participation token. This token must flow through the commit transaction of the respective head
member and the open transaction, to be valid, must collect the full set of participation tokens. We
may regard the participation token as representing a capability and obligation to participate in the
head protocol.

3.3 The head protocol

The head protocol starts with an initial set Uy of UTxOs that is identical to the UTxOs locked
onchain.

Transactions and local UTxO state. The protocol confirms individual transactions in full
concurrency by collecting and distributing multisignatures on each issued transaction separately.
As soon as such a transaction is confirmed, it irreversibly becomes part of the head UTxO state
evolution—the transaction’s outputs are immediately spendable in the head, or can be safely trans-
ferred back onchain in case of a head closure.

Each party maintains their view of the local UTxO state £, which represents the current set of
UTxOs evolved from the initial UTxO set Uy by applying all transactions that have been confirmed
so far in the head. As the protocol is asynchronous the parties’ views of the local UTxO state
generally differ.

11

Snapshots. The above transaction handling would be enough to evolve the head state. However,
an eventual onchain decommit would have to transfer the full transaction history onchain as there
would be no other way to evidence the correctness of the UTxO set to be restored onchain.

To minimize local storage requirements and allow for an onchain decommit that is independent
of the transaction history, UTxO snapshots Ui, Us,... are continuously generated. For this, a
snapshot leader requests his view of the confirmed state £ to be multisigned as a new snapshot—
the first head snapshot corresponding to the initial state Uy. A snapshot is considered confirmed if
it is associated with a valid multisignature.

In contrast to transactions, the snapshots are generated sequentially. To have the new snapshot
U;y1 = £ multisigned, the leader does not need to send his local state U;,1, but only indicate, by
hashes, the set of (confirmed) transactions to be applied to U; in order to obtain U4;.

The other participants sign the snapshot as soon as they have (also) seen the transactions
confirmed that are to be processed on top of its predecessor snapshot: a party’s confirmed state is
always ahead of the latest confirmed snapshot.

As soon as a snapshot is seen confirmed, a participant can safely delete all transactions that
have already been processed into it as the snapshot’s multisignature is now evidence that this state
once existed during the head evolution.

Closing the head. A party that wants to close the head decommits his confirmed state £ by
posting, onchain, the latest seen confirmed snapshot Uy together with those confirmed transactions
that have not yet been processed by this snapshot. During the subsequent contestation period,
other head members can post their own local confirmed states onchain.

3.4 The full protocol and further aspects

To improve on the basic protocol, we change the mainchain state machine (as described in Ap-
pendix C) to include

e incremental commits and decommits (adding UTxOs to or removing them from the head
without closing),

e optimistic one-step head closure without the need for onchain contestation,

e pessimistic two-step head closure with an O(A) contestation period, independent of n, where
A is the onchain settlement time of a transaction, and

e split onchain decommit of the final UTxO set (in case it is too large to fit into a single
transaction).

These further protocol aspects are summarized in Appendix D:

e The handling of fees incentivizing parties to advance the head’s state machine on the main-
chain.

e The handling of time and timing issues in the (asynchronous) head protocol.

e Transaction throttling in the head to avoid the head’s state becoming too large under pes-
simistic conditions.

12

4 Protocol Setup

In order to create a head-protocol instance, an initiator invites a set of participants {pi,...,pn}
(himself being one of them) to join by announcing to them the protocol parameters: the list of
participants, the parameters of the (multi-)signature scheme to be used, etc.

Each party then establishes pairwise authenticated channels to all other parties.

For some digital-signature scheme, each party p; generates a key pair (k; ver, ki sig) and sends his
respective verification key k; er to all other parties. This “standard” digital-signature scheme will
be used to authenticate mainchain transactions that are restricted to members of the head-protocol
instance.

For the multisignature scheme (MS)—see Section 2.1—each party p; generates a key pair

(Ki,ven Kz’,sig) < MS—KG(H)

and sends his verification key Kj yer to all other parties.
Each party then computes his aggregate key from the received verification keys:

Kagg =+ MS-AVK(L (Kjver) jefn]) -

The multisignature scheme will be used for the offchain confirmation (and offchain and onchain
verification) of head-protocol events.

At the end of this initiation, each party p; stores his signing key and all received verification
keys for the signature scheme,

(ki,sig7 Ever = (k?j,ver)je[n]))

and his signing key, the verification keys, and the aggregate verification key for the multisignature
scheme,

(Kz',sigy Kver = (Kj,ver)je[n]a Kagg) .

If any of the above fails (or the party does not agree to join the head in the first place), the
party aborts the initiation protocol and ignores any further action.?
The initiator now posts the initial transaction onchain as described in Section 5.

5 Mainchain

Here we describe the details of the mainchain state machine (SM) controlling a Hydra head (see
Fig. 3). For state transitions, a formal description of the conditions in tx= is foregone in favor of
the intuitive explanations in the text and the figures.

Onchain verification algorithms. The status of the head is maintained in a variable 7, which is
part of the SM state and updated by so-called onchain verification (OCV) algorithms Initial, Close,
Contest, and Final. In the context of the mainchain protocol, these OCV algorithms are intentionally
kept as generic as possible; this keeps the mainchain SM compatible with many potential head-
protocol variants. The concrete OCV algorithms for the head protocol specified in this paper are
given in context of the head protocol itself as they depend on the specific head-protocol internals:

20f course, aborting the initiation can be achieved more gracefully by explicitly notifying the initiator about one’s
non-participation. Techniques are even known to finish such an initiation in agreement among all parties [23].

13

initial,

Kaggs s 1. T

\ commit Transaction
(P} uvals o, Uy

min>

Signed: k,

Figure 4: initial transaction (left) with commit transaction (right) attached and one of the
locked outputs (center).

verification of head-protocol certificates and related onchain state updates. As such, the OCV
algorithms can be seen as abstract mainchain algorithms implemented by the specific head protocol.
Consequently, the OCV implementation for our head protocol is described in Section 6.3.1.

Initial state. After the setup phase of Section 4, the head initiator posts an initial transaction
(see Fig. 4). The initial transaction establishes the SM’s initial state (initial, Kagg, hmT, 7, T'), where
initial is a state identifier, K,gg is the aggregated multisignature key established during the setup
phase, hmT is the root of a Merkle tree for the signature verification keys ko, = (k1,...,kpn) ex-
changed during the setup phase (identifying the head members), n is the number of head members,
and T is the length of the contestation period. The initial transaction also forges n participation
tokens {pi,...,pn} :: cid, where the currency ID cid is given by the unique monetary-policy script
consumed by the cid input. The script is unique as it is bound to an output and the ledger prevents
double spending. Consequently, we can use cid as a unique identifier for the newly initialized head.

Crucially, the initial transaction has n outputs, where each output is locked by a validator vjnjsal
and the i'" output has &; in its data field. Validator viniia ensures the following: either the output
is consumed by

1. an SM abort transaction (see below) or

2. a commit transaction (identified by having validator veem in its only output), and

(a) the transaction is signed and the signature verifies as valid with verification key k;,

(b) the data field of the output of the commit transaction is U; = makeUTxO(o1,...,0m),
where the o; are the outputs referenced by the commit transaction’s inputs and makeUTxO
stores pairs (out-ref;, 0;) of outputs o; with the corresponding output reference out-ref;.

The general well-formedness and validity of the initial transaction is checked on the mainchain.
The head members additionally check whether the head parameters match the parameters agreed
on during the setup phase. In case of a mismatch the head opening is considered as failed.

Committing outputs to a head. To lock outputs for a Hydra head, the i*" head member will
attach a commit transaction (see Fig. 4) to the i*h output of the initial transaction. Validator veom
ensures that the commit transaction correctly records the partial UTxO set U; committed by the

party.

14

initial, collectCom

T

commit transactions

wees Veoms Uy

-+ Yeom: Uy

(i Tnax) (i)

Forge {p;,....p,} :: cid Signed: k'

Figure 5: initial transaction (left) with collectCom transaction (right) and commit transactions
(center).

All commit transactions will in turn be collected by an SM transaction—either collectCom or
abort (see below).

Collecting commits. The SM transition from initial to open is achieved by posting the collect-
Com transaction (see Fig. 5). All parameters Kagg, hvT, 1, and T remain part of the state, but in
addition, a value n < Initial(Uy, ..., U,) is stored in the state. The idea is that 1 stores information
about the initial UTxO set, which is made up of the individual UTxO sets U; collected from the
commit transactions, in order to verify head-status information later (see below).

It is also required that all n participation tokens be present in the SM output of the collectCom
transaction. This ensures that the collectCom transaction collects all n commit transactions. Note
that since vinitial does not allow an SM commit transaction to consume the outputs of the initial
transaction, the only way to post the collectCom transaction is if each head member has posted a
commit transaction.

Finally, note that the transition requires a proof myt that the signer &’ is in the Merkle Tree
belonging to ApmT, which ensures that only head members can post SM transactions. This will be
the case for all transitions considered in this paper (and will not be pointed out any further).

Aborting a head. The abort transaction (see Fig. 6) allows a party to abort the creation of a
head in case some parties fail to post a commit transaction. The final state does not contain any
information (beyond its identifier), but it is ensured that (1) the outputs U correspond to the union
of all committed UTxO sets U; and (2) all participation tokens are burned.

Close transaction. In order to close a head, a head member may post the close transaction (see
Fig. 7), which results in a state transition from the open state to the closed state. For a successful
close, a head member must provide valid information £ about (their view of) the current head
state. This information is passed through OCV algorithm Close, resulting in a new OCV status
17" < Close(Kagg,1,&). OCV algorithm Close uses the previous OCV status 7 and Kagg to check
the head information &. Note that if a check fails, Close may output L, but in order for a close
transaction to be valid, ' # L is required.

Once a close transaction has been posted, a contestation period begins which should last at
least T slots. Hence, the last slot Tfna of the contestation period is recorded in the state, and it is
ensured that Txna > 1. +T.

max

15

initial,

Kogg s, T

final

[o]

{P1} Vintan k1

(T Tmax) (i Tmax)

Forge {py,...,p,} :: cid Signed: k'

Burn {p,,...,p,} :: cid

Figure 6: initial transaction (left) with abort transaction (right) and commit transactions
(center).

closed, K,

7', C, by,
T, Thinal

(i Tmax) (i Tinax)

Signed: k Signed: k'

Figure 7: collectCom transaction (left) with close transaction (right).

Finally, the SM state is extended by a set C initialized to the poster’s signing key, i.e., C + {k'}.
C is used to ensure that no party posts more than once during the contestation period.

Contestation. If the party first closing a head posts outdated/incomplete information about the
current state of the head, any other party may post a contest transaction (see Fig. 8), which causes
a state transition from the closed state to itself. The transition handles update information £ by
passing it through OCV algorithm Contest, resulting in a new OCV status ' <— Contest(Kaqg, 1),).
OCV algorithm Contest uses the previous OCV status n and K,gg to check the update information
&. Similarly to Close, Contest may output L, but in order for a contest transaction to be valid
1 # L is required.

The contest transaction is only valid if the old set C of parties who have contested (or closed) so
far does not yet include the poster, i.e., k¥’ ¢ C. If this check passes, the set is extended to include
the poster of the contest transaction, i.e., C' < C U {k’'}. Furthermore, contest transactions may
only be posted up until T§nal, i-€., it is required that 7/, ., < Tfinal-

Observe that during the contestation period, up to n —1 contest transactions may be posted (of
course, the parameter T" has to be chosen large enough as to allow each head member to potentially
post a close/conlest transaction).

Final state. Once the contestation phase is over, a head may be finalized by posting a fanout
transaction, taking the SM from closed to final. The fanout transaction must have outputs that
correspond to the most recent head state. To that end, OCV predicate Final checks the transaction’s

16

closed, Kagg,

0, C,hyr,n,
T Thina

contest

T §

(i Tina) (i Tnax)

Signed: k Signed: k'

Figure 8: close/contest transaction (left); contest transaction (right)

fanout

(i "max) (i Ta)

Signed: k Signed: k'

Burn {p,,...,p,} :: cid

Figure 9: close/contest transaction (left); fanout transaction (right)

output set U against the information recorded in 7. The fanout transaction is only valid if Final
outputs true. Moreover, to ensure that the fanout transaction is not posted too early, r} .. > Tfnal
is required. Finally, all participation tokens must be burned.

6 Simple Head Protocol Without Conflict Resolution

This section describes the simplified version of the head protocol, and without conflict resolution,
with the goal to demonstrate the protocol basics without overloading the presentation with too
many details. Conflict resolution is added to the protocol in Appendix B, and the full protocol is
sketched in Appendix C.

We first introduce a security definition for the head protocol in Section 6.1. The protocol
machine is described in Section 6.2, the head-specific mainchain code in Section 6.3, and a security
proof for the head protocol is given in Section 6.4.

6.1 Security definition

6.1.1 Protocol syntax

The head-protocol syntax is HP = (Prot, Initial, Close, Contest, Final). The main component is the
protocol machine Prot, an instance of which is run by every head member. The other algorithms
are used for setup and onchain verification and form the interface to the mainchain. In particular,

e 3 <+ generates global parameters,

17

(Kver, Ksig) < MS-KG(X) allows every head member to generate fresh public/private key
material based on the global parameters,

Kagg <+ MS-AVK(E, (Kyer,i)i) aggregates public keys, and

Initial, Close, Contest, and Final are onchain verification algorithms (cf. Section 5).

The head-protocol machine Prot has the following interface to the environment:

input (init,i, K ., Ksg, Up) is used to initialize the head protocol, for the party with index
i, with a vector of public-key material K., private-key material K, and an initial UTxO
set Up;

input (new, tx) is used to submit a new transaction tx;

output (seen,tx) announces that transaction tx has been seen (by the party outputting the
message);

output (conf, tx) announces that transaction tx has been confirmed (in the view of the party
outputting the message);

input (close) is used to initiate head closure (produces a certificate €); and

input (cont,n) is used to contest (produces a certificate §).

6.1.2 Protocol security

The security definition for the head protocol guarantees the following four, intuitively stated prop-
erties:

CONSISTENCY: No two uncorrupted parties see conflicting transactions confirmed.

Livengss: If all parties remain uncorrupted and the adversary delivers all messages, then
every transaction becomes confirmed at some point.

SouUNDNESS: The final UTxO set accepted on the mainchain results from a set of seen trans-
actions.

CoMPLETENESS: All transactions observed as confirmed by an honest party at the end of the
protocol are considered on the mainchain.

Experiment for security definition. The security properties above are captured by considering
a random experiment that involves

an adversary A,
a network under full scheduling control of .4, able to drop messages or delay them arbitrarily,
a setup phase,

n parties p;, corruptible by .4, running the head protocol with the parameters from the setup
phase and an initial UTxO set Uy chosen by A, and

an abstract mainchain (mostly) controlled by A.

18

The experiment ends once the mainchain state machine arrives in the final state, and the
adversary wins if certain conditions are not satisfied at the end of the experiment.
In more detail, the experiment proceeds as follows:

1.
2.

Global parameters 3 <— MS-Setup are generated, and ¥ is passed to A.

For each party p;, key material (Kyeri, Ksigi) < MS-KG(X) is generated, and the vector K.,
of all public keys and K,gz — MS-AVK(X, K .,) are passed to A.

. Each party p;’s protocol machine is initialized with (init,i, K ., Ksgq,Up), where Uy is

==ver?

chosen by A.

. The adversary now gets to control inputs to parties (e.g., new transactions, close/contest

requests) and sees outputs (e.g., seen and confirmed transactions). The following bookkeeping
takes place:

e when an uncorrupted party p; outputs £ upon close command, record (close,i,¢);

e when uncorrupted party p; outputs £ upon (cont,n) command, record (cont,i,7,§).
In “parallel” to the above, the experiment sets C, Heont <— () and does the following to simulate
the mainchain:

(a) Initialize n < (Uy,0, 0).

(b) When A supplies (i,€): if i is uncorrupted, £ gets replaced by the ¢ recorded in
(close,i,&) and Heont < Heont U {i}. Then, n < Close(Kagg,n,§) and C < C U {i}
is computed. If Close rejects, everything in this step is discarded and the step repeated.

(c) The adversary gets to repeatedly supply (i, &) for i ¢ C; if i is uncorrupted, £ gets replaced
by the & recorded in (cont,%,&) and Heont <= Heont U {i}. Then, 1 <— Contest(Kagg,7, &)
and C < C U {i} is computed. If Contest rejects, everything in this step is discarded.

(d) When the adversary supplies Ufinal, b < Final(n, Ufinal) is computed, and the experiment
ends.

Our protocol gives different security guarantees depending on the level of adversarial corruption. It
provides correctness independently of both, the number of corrupted head parties and the network
conditions. But the guarantee that the protocol makes progress (i.e., that new transactions get
confirmed in the head) is only provided in the case that no head parties are corrupted and that the
network conditions are good.

To capture this difference, we distinguish:

Active Adversary. An active adversary A has full control over the protocol, i.e., he is fully unre-

stricted in the above security game.

Network Adversary. A network adversary Ay does not corrupt any head parties, eventually delivers

all sent network messages (i.e., does not drop any messages), and does not cause the close
event. Apart from this restriction, the adversary can act arbitrarily in the above experiment.

19

Security events. Consider the following random variables:

e S;: the set of transactions tx for which party p;, while uncorrupted, output (seen, tx);
e (;: the set of transactions tx for which party p;, while uncorrupted, output (conf,tx);

e Heont: the set of (at the time) uncorrupted parties who produced £ upon close/contest request
and ¢ was applied to correct 7 (see above); and

e 7{: the set of parties that remained uncorrupted.

The security of the head protocol is captured by considering the following events, each corresponding
to one of the security properties introduced above:

e CONSISTENCY (HEAD): In presence of an active adversary, the following condition holds:
For all 4,7, Uy o (C; UC;) # L, i.e., no two uncorrupted parties see conflicting transactions
confirmed.

e LIVENESS (HEAD): In presence of a network adversary the following condition holds: For
any transaction tx input via (new, tx), the following eventually holds: tx € ﬂie[n] Ci V Vi:

Uy o (C; U{tx}) = L, i.e., every party will observe the transaction confirmed or every party
will observe the transaction in conflict with his confirmed transactions.?

e SOUNDNESS (CHAIN) In presence of an active adversary, the following condition is satisfied:
35 C Nicn S Ugnal = Up o S i.e., the final UTxO set results from a set of seen transactions.

e COMPLETENESS (CHAIN): In presence of an active adversary, the following condition holds:
For S as above, UpZE Heont C; C S, ie., all transactions seen as confirmed by an honest party
at the end of the protocol are considered.

Note that our simplified protocol with conflict resolution and our full protocol in Appendices B
and C achieve liveness in the above sense, but that our simplified protocol without conflict resolution
in Section 6 only achieves a weaker notion of liveness, namely liveness in a

Conflict-Free Ezecution: Let N = {tx | (new,tx)} the set of all transactions input to a new event
during the execution of the head protocol. A head-protocol execution is conflict-free iff

UooN?éJ_.

Respectively, the liveness aspect of the simplified protocol without conflict resolution is captured
by the following event, instead:

e CONFLICT-FREE LIVENESS (HEAD): In presence of a network adversary, a conflict-free execu-
tion satisfies the following condition: For any transaction tx input via (new, tx), tx € ﬂie[n] C;
eventually holds.

6.2 Protocol machine

The protocol machine Prot consists of a number of subroutines that handle inputs from the en-
vironment (e.g., the client command to issue a new transaction for confirmation, or the arrival
of another party’s confirmation request). The protocol is depicted in Figure 10. All relevant
non-obvious notation is explained in the following paragraphs.

3In particular, liveness expresses that the protocol makes progress under reasonable network conditions if no head
parties get corrupted — implying that, given any guaranteed upper bound ¢ on message delivery delay, the worst-case
transaction-confirmation time is bounded in function of §.

20

6.2.1 Local state representation

Every party maintains local objects to represent transactions, snapshots, and his local head-UTxO
set. These objects exist in two versions, a seen object has been signed by the party (the party has
seen and approved the event); and a confirmed object is associated with a valid multisignature (the
party has received a valid multisignature on the object). A seen object X is denoted by X and a
confirmed object by X.

A party’s local protocol state consists of the multisignature verification keys and its own signing
key, of snapshot counters § and s, and of variables

e U and U, keeping track of the most recent seen resp. confirmed, snapshots,
e £ and L, keeping track of recent seen resp. confirmed UTxO sets, and

e 7 and T, the sets of seen resp. confirmed, transactions that have not been considered by a
snapshot yet.

Variables U and U store so-called snapshot objects, which are data structures keeping information
about a snapshot. Specifically, a snapshot object U has the following structure:

U.s | snapshot number

U.U | corresponding UTxO set

U.h | hash of U

U.T | set of transactions relating this snapshot to its predecessor
U.S | signature accumulator (array of signatures)

U.c | multisignature

The function snObj(s, U, T') initializes a snapshot object and is explained later.
Similarly, 7 and T store sets of transaction objects. A transaction object tx has the following
structure:

tx.i | index of the party issuing transaction for certification
tx.tx | transaction

tx.h | hash of tx

tx.S | signature accumulator (array of signatures)

tx.0 | multisignature.

The function txObj(i, tx) initializes a transaction object by setting the appropriate fields to the
passed values (including computing the hash of tx) and the remaining fields to () resp. L.

6.2.2 Three-round entity confirmation

Transactions and snapshots are confirmed in an asynchronous 3-round process:*

e req: The issuer of a transaction or snapshot requests the entity to be signed by sending the
entity description to every head member.

“Note that, as a variant, this 3-round process (with linear communication in n) can be condensed to 2 rounds
(with quadratic communication in n) by combining the last two rounds into an “all-to-all” signature notification.
This variant may be preferable for small n.

21

e ack: The head members acknowledge the entity be replying their signatures on the entity to
the issuer.

e conf: The issuer collects all signatures, combines the multisignature, and sends the multisig-
nature to all head members.

6.2.3 Code notation

Code is depicted by view of a generic head party p;. We assume that a party only accepts mes-
sages authenticated by its claimed sender (by use of the authenticated channels established during
the setup phase)—unauthenticated messages are simply treated as unseen by the recipient. For
simplicity, whenever a party p; sends a message to all head parties, it also sends the message to
itself.

For the transaction set 7 (and similarly 7), 7[h] denotes tx € 7 such that tx.h = h, i.e., the
transaction object corresponding to the transaction with hash H(tx) = h.

The | operator indicates the projection of an object onto a subset of its fields. For example,
THh) denotes the set of hashes corresponding to the transactions in T.

The following notation is used to describe the application of transactions to a given UTxO set.

e U' = U o tx assigns to U’ the UTxO set resulting from applying transaction tx to UTxO set
U. In case that the validation fails it returns U’ = L.

e U' =UoT assigns to U’ the UTxO set resulting from applying all transaction in the trans-
action set T" to UTxO set U. In case that not all transactions can be applied it returns
U= 1.

In the protocol routines of Fig. 10, by require(P), we express that predicate P must be satisfied
for the further execution of a routine—while immediately terminated on —=P. By wait(P) we express
a non-blocking wait for predicate P to be satisfied. On =P, the execution of the routine is stopped,
queued, and reactivated as soon as P is satisfied. Finally, we assume the code executions of each
routine to be atomic—excluding the blocks of code that may be put into the wait queue for later
execution, in which case we assume the wait block to be atomic.

6.2.4 Protocol flow

Initializing the head. Initially, by activation via the (init) event, the parties store their mul-
tisignature key material form the setup phase, ad set £ = L =U=U = Uy where Uy is the
initial UTxO set extracted from the n-state of the collectCom transaction (see Fig. 5). The initial
transaction sets are empty, 7 = T = (), and s =5=0.

Confirming new transactions.

(new). At any time, by calling (new,tx), a head party can (asynchronously) inject a new trans-
action tx to the head protocol—initiating a 3-round confirmation process for tx as described in
Section 6.2.2. For this, the transaction must be well-formed (valid-tx) and applicable to the current
confirmed local UTxO state: £otx # L. If the checks pass, a (reqTx, tx) request is sent out to all
parties.

22

Simplified Hydra Head Protocol Without Conflict Resolution

on (init,, I o, Ksig, Uo) from client
V A KVEI’

avk <— MS-AVK(V)

sk Kyg

5,5+ 0

U, U + snObj(0, Uy,)

ﬁ,f — U()

T T+

on (new, tx) from client

require valid-tx(tx) and Lotx # L
multicast (reqTx, tx)

on (newSn) for p;

require leader(s+1) =i and U =U
T« (maxTxos(?))“h)

multicast (reqSn,5+ 1,7)

on (close) from client
‘ return (H.U,H.s,ﬁ.&,?‘mx’ﬂ)

on (cont,n) from client
Uy 59, Ty) <1
if 5<s
U< U,
54 sy
g€
else
U+ UU
ER]
G+ UG
'+ applicable(U, T U T,) \ T,
if U =0,
‘ U<+c¢e
return -
U, s,6,{t e T | tax e T'})

on (reqTx,tx) from p;
require valid-tx(tx) A L£otx # |
wait Lotx # L

h <+ H(tx)

T1h] < txObj(j, tx)

L Lotx

output (seen, tx)

0; < MS-Sign(sk, h)

send (ackTx, h,0;) to p;

on (ackTx, h,o;) from p;
require T [h].i =i
require 7h].S[j] = ¢
TIh].S[j] ¢ o
if Vi : TIh].S[k] # ¢
&+ MS-ASig(h, V, T[h].S)
if 6#1
‘ multicast (confTx, h,)

on (confTx, h,&) from p;
if MS-Verify(avk, h, &)
tx < Th].tx
L <+ Lotx
TIh.6 <&
Tlh] « Tk
T« T\TIh
output (conf, tx)

on (reqsn,s,T) from p;
require s =5+ 1 and leader(s) = j
wait s=3 and T C 'T‘WL)
§+5+1
U + snObj(3,U.U,T)
07 < MS-Sign(sk,U.h| 5)
send (ackSn, §,0;) to p;

on (ackSn, s,0;) from p;
require s = § and leader(s) =i
require U4.S[j] = ¢
U.S8lj) « o;
if Yk U.S[k] #£ ¢
& < MS-ASig(Ul.hl|s. V,U.S)
ifo#1
| multicast (confSn, s, &)

on (confSn,s,d) from p;
require s = § # 5
if MS-Verify(avk,4.h]|3, 5)
S48
Us—a
U—u
T « T \ Reach” (.T)

Figure 10: Head-protocol machine for the simple protocol without conflict resolution from the
perspective of party p;.

(reqTx). Upon receiving request (reqTx,tx), a signature is only issued by a party p; if tx applies
to his local seen UTxO state: £ otx # L. If this is the case, the party waits until his confirmed
UTxO state £ has “caught up”: the signature is only delivered as soon as Lotx # 1, ie., a

23

transaction is only signed once it is applicable to the local confirmed state.

In case the preconditions are satisfied, a respective transaction object is allocated, initialized,
and added to 'f'; L is updated by applying tx, and (seen, tx) is output; and, finally, a signature on
the hash of tx, 0 = MS-Sign(H (tx)), is delivered back to the transaction issuer by replying with an
(ackTx, H (tx),0).

(ackTx). Upon receiving acknowledgment (ackTx, h, o), the transaction issuer stores the received
signature in the respective transaction object. If a signature from each party has been collected, p;
computes the multisignature & and, if valid, sends it to all parties in a (confTx, h,d) message.

(confTx). Upon receiving confirmation (confTx,h,d) from the transaction issuer, containing a
valid multisignature, the multisignature is stored in the respective transaction object, £ is updated
by applying tx, and the transaction object is moved from 7 to 7. Finally, (conf, tx) is output.

Creating snapshots. In parallel to confirming transactions, parties generate snapshots in a
strictly sequential round-robin manner. We call the party responsible for issuing the i*® snapshot
the leader of the i*® snapshot. The issuance frequency of the snapshots tunes a tradeoff between
the transaction space that has to maintained by the parties for storing confirmed but snapshot-
unprocessed transactions against the snapshot-communication overhead in the head protocol. As
the information to be exchanged among the parties for snapshot confirmation is small, such snap-
shots can in principle be greedily issued as soon as the next snapshot leader sees a new confirmed
transaction.

(newSn). On activation by (newSn), the snapshot leader verifies whether U = U to ensure that he is
not already in the process of snapshot creation. The leader p; then announces the transaction set 7T,
the not yet snapshot-processed confirmed transactions to be applied to compute the new snapshot.
However, to reduce communication overhead, only the hashes of the mazimal transactions of T
are announced which are the transactions of 7 not referenced by another transaction in 7. This
maximal st is computed by function 7' = maxTxos(7)*®). Finally the leader sends (reqSn, 541, T)
to all parties.

(regSn). Upon receiving request (reqSn, s, T'), party p; checks that s is the next snapshot number
and that p; is responsible for leading its creation. Party p; then waits until the previous snapshot
is confirmed (5 = §) and all transactions referred in T are confirmed.

Only then, p; increments his seen-snapshot counter §, and allocates a new snapshot object
calling function snObj that performs the following steps:

1. It reconstructs the transaction set to be applied to the latest confirmed snapshot by calling
function ReachT(T) that computes all transactions in 7 reachable from the transactions (with
hashes) in T" by following the output references (the inverse of maxTxos); and

2. computes the UTxO set of the new snapshot as .U + U.U o Reach?(T), and

3. computes the hash of .U and sets the fields for the snapshot number and the maximal
transactions applied.

24

Finally, p; computes a signature o; = MS-Sign(sk, H (Z/Al)|18), and replies to p; the message (ackSn, 3, ;).

(ackSn). Upon receiving acknowledgment (ackSn,s,o;), the snapshot leader stores the received
signature in the respective snapshot object. If a signature from each party has been collected, p;
computes the multisignature ¢ and, if valid, sends it to all parties in a (confSn, h,5) message.

(confSn). Upon receiving confirmation (confSn, s, &) from the snapshot leader, containing a valid
multisignature, p; stores the multisignature and updates 5 = s and U = U. Finally, the set of
confirmed transactions is reduced by excluding the transactions that have been processed by Uu:
T < T \ Reach” (U.T).

Closing the head.

(close). In order to close a head, a party causes the (close) event which returns the latest
confirmed snapshot .U, snapshot number U.s and the respective multisignature U.c, together

with the remaining confirmed transactions ﬁ(tx’&) (multisigned). These items form the certificate
¢ to be posted onchain (see Section 6.3.2).

(cont). In order to contest the current state closed on the mainchain, a party causes the (cont,)
event with input 7 being the latest observed head status that has been aggregated onchain for this
head so far (by a sequence of close and contest transactions).

The algorithm then computes “differential” data between the current onchain head status and
the contester’s confirmed view: the latest confirmed snapshot (if newer than seen onchain) and the
set of confirmed transactions (in his view) not yet considered by the current state 7. These items
form the certificate £ to be posted onchain (see Section 6.3.2).

We only want to pass on the (multisigned) transactions in TH) \ 7}, that have not yet been
processed by the latest snapshot U. This is achieved by applying function applicable that tests, for

each transaction in tx € 774(“() U T;, in appropriate order, whether U o tx # L is still applicable.
Note that the transactions in T}, have to be considered in this process as some transactions in T
may directly depend on them, and would otherwise not be detected to be applicable. As we only
want to extract “differential” data, the transactions in T;, are finally removed again as they are
already recorded in the (accumulative) n state.

6.3 Head-specific mainchain functionality

On an abstract level, as described in Section 5, mainchain and head functionality are clearly sepa-
rated into events that happen onchain and events that happen in the head. In particular, network
participants that are not members of the head protocol only observe mainchain events.

Still, depending on the concrete implementation of the head certification process (which our
abstract description of the mainchain functionality is agnostic of), some mainchain functionality
has to be adapted to the specific choice made for the head protocol. This concerns two aspects:

5Note that no UTxO sets have to be exchanged in this process as the parties can locally compute a new snapshot
by the given transaction hashes.

25

. —>]
client | Hydra Protocol

Mainchain Protocol Head Protocol
state machine protocol machine
chain —> abs OCV impl OCV l— head
messaging +1— abs CHI impl CHI T messaging

Figure 11: Hydra protocol components.

Onchain verification (OCV). The confirmation of head events by means of the multisignature
scheme must be verifiable onchain; and thus, the exact workings of head certification must
be known to the mainchain protocol. Now, given that the onchain portion of the mainchain
protocol (i.e., state machine transition validation) is realized by EUTxO validator scripts,
these scripts utilize the abstract interface of the OCV. Hence, we interpret the head OCV
code as implementing the abstract mainchain OCV specification for all network participants
(Fig. 11).

Chain/head interaction (CHI). Upon observing certain onchain events, a head member’s main-
chain functionality must interact with the head protocol. For instance, this is the case, when a
head member observes the closing of the head on the mainchain. The mainchain functionality
must then query the head protocol to know whether a contest transaction must be posted.

6.3.1 Onchain verification (OCV)

Recall that the mainchain functionality was generically described it terms of 7, the latest head
state as known onchain, and &, a certificate posted by a head member to update n by delivering
head-confirmed information.

We shortly recapitulate the abstract workings of OCV. After the processing of the collectCom
transaction, the initial UTxO set is stored as 7 in association of the open state. Later, a party p;
can

e produce a certificate & accepted by Close(+) to close out the head and make (his view of) the
current head-UTxO set available on the mainchain, and,

e given the current state on the mainchain, produce a certificate ¢ accepted by Contest(n, -)
to contest a closure and supply an updated view of the head-UTxO set to the mainchain.

Finally, the function Final checks the UTxO set in the transaction that moves the state machine
into its final state against the information stored in 7.

We now instantiate the respective onchain verification (OCV) functionality for the head protocol
given in this section—with its specific way of certifying head states (see Fig. 12).

Initial. The entire initial UTxO set Up is composed from the n committed UTxO sets U,,, ..., U,,,
and returned as n = (Uy, 0, 0).

26

Algorithms for Onchain Verification

Initial (Up,, ..., Up,) Contest (Kagg, 1, &)
‘ return (U, U---UU,,.,0,0) Uy, 9, Ty) <1
(U,5,6,T) < ¢
Close (Kagg, 1, €) if A(tx;, ;) € T : "MS-AVerify(Kagg, H(tx;), 5;)
(U,5.6,T) « ¢ ‘ return L
if 3(tx;,0;) €T if s <s,
—MS-AVerify(Kagg, H(tx;), 5i) ‘ Un < Uy
‘ return L else
if s=0 Un < U
| (U, «n if ~MS-AVerify(Kagg, H(U)|s,5) return L
e‘lse li ﬁMSJ:Avenfy(Kagg’H(U)”S’U) T,, + applicable(Un, T;,)
return
: (X)) —
WU oTH) _ | if Uyo (T, UuT)=L1
‘ return L ‘ return L o
tx
return (U, 5, TH9) return (Uy, s, T;, U T+ %))
Final (n,U)
(U’f)? SanT]) A n
return (U = U, o Ty)

Figure 12: The algorithms used by the state machine for onchain verification.

Close. The state machine uses the onchain verification (OCV) algorithm Close to verify the infor-
mation submitted by the party.

Recall that, when a p; receives the close command, it simply outputs as certificate the snap-
shot number, the UTxO set, and the multisignatures corresponding to the most recent confirmed
snapshot I as well as all confirmed transactions in 7 which have not yet been considered in U,
along with the corresponding multisignatures.

OCV function Close (see Figure 12) verifies all multisignatures in £ = (U, s,5,T), i.e., those of
H(U)||s and the transactions in 7', and ensures that the transactions in 7" can be applied to U (or,
in case of s = 0, to Up). The algorithm then outputs the new state 7/ = (U, s, T+%)).

Contest. The state machine uses the OCV algorithm Contest to verify the “differential” data
submitted by a contesting party.

Recall that, when a p; receives the command (cont,n) for n = (Uy,,s,,T;), he supplies his
latest snapshot .U if it is newer than Uy, and those confirmed transactions that have not yet been
considered by the latest snapshot. In case that U, is newer than the own snapshot, the transactions
yet to be delivered can be found by trying to apply them (together with 7;,) to U,—as those already
considered by U, can no longer be applied; this computation is performed by function applicable.

Similarly to the close case, OCV function Contest, given £ = (U, s,4,T), first checks all signa-
tures.

In case that the provided snapshot U is newer than the snapshot U, from the onchain state 7,
the set T;, is reduced to those transactions that are still applicable to the newer of both snapshots,
Un.

Finally, it is ensured that 7}, U TH) can be applied to the newest of both snapshots, and the

27

Chain/Head Interaction

on (clientTx, tx)
‘ head.(new, tx)

on (clientClose)
& < head.(close)
chain.postTx(close, &)

on (chainInitial)
require Kac'g‘g'" = K?Etg“"
require Ayt = Hyverkle (Fyer)

chain.postTx(commit, U)

on (chainInitialTimeOut)
if (all members committed)
‘ chain.postTx(collectCom)

on (chainCollectCom)

(Uo, -, -) Initial(Up,, ..., Up,)
head.(init, Z”Kver’ Ksig,i> Uo)

on (chainClose)

7 = (U',s',T") < chain.Close(Kagg, 1, £)
§=(U,s,0,T) < head.(cont,n’)
ifs>s vV T#0D

| chain.postTx(contest, &)

on (chainContest)

n = (U',s',T") + chain.Contest(Kagg, 1, §)
§=(U,s,0,T) < head.(cont,7’)

ifs>s vV T#0D

| chain.postTx(contest, &)

else
| chain.postTx(abort) on (chainClosedTimeOut)
‘ chain.postTx(fanout)

Figure 13: Chain/head interaction: Additional mainchain actions for head members.

new (aggregate) state ' = (Uy, s, T, U TH™) is output.
Final. Given n = (U, sy, T;;) and U, Final checks that U = U, o T;,.

6.3.2 Chain/head interaction (CHI)

In Fig. 13, we summarize that part of the Hydra mainchain functionality that interacts with the
head member (client) and the head protocol.

Routine clientTx handles the client’s request to issue a head transaction by delegating the
request to the head protocol. Routine clientClose handles the client’s request to close the head.
It gathers a certificate for the current local state from the head protocol, and posts this certificate
onchain.

Routine chainInitial gets triggered on seeing the head’s initial transaction onchain. It verifies
the parameters recorded in the initial transaction against the parameters gathered during the setup
phase described in Section 4: in particular, the aggregate multisignature key must match, and hApmt
must be the Merkle-tree hash of the gathered verification keys k,,. If successful, the client’s UTxO
set is committed onchain.

Routine chainInitialTimeOut gets triggered once the initial commit period has expired. It
then either posts a collectCom transaction containing all committed UTxO sets—in case that all
head members committed a UTxO set—or an abort transaction otherwise.

Routine chainCollectCom gets triggered on seeing the head’s collectCom transaction onchain.
It computes, into Up, the set of committed UTxOs, and initializes the head protocol.

Routines chainClose and chainContest get triggered by observing the head’s close and contest
transactions, respectively. They compare the latest onchain state n to the party’s own head state by

28

calling the head protocol’s cont function to obtain a certificate £ for a differential onchain update
to represent the portions of the local state not yet considered by 5. If necessary, a corresponding
contest transaction is posted onchain.

Routine chainClosedTimeOut gets triggered once the contestation period has expired. It then
posts a fanout transaction containing the final UTxO set.

6.4 Security proof

This section proves that the head protocol presented in Section 6 satisfies CONSISTENCY, CONFLICT-
FREE LIVENESS, SOUNDNESS, and COMPLETENESS. The proof proceeds by establishing several
invariants that facilitate proving these properties. Throughout the proof, the assumption is made
that at most n —1 head members are corrupted. Moreover, assume no signatures are forged and no
hashes collide; these events occur with negligible probability only. Consider the following random
variables:

e SN;: the UTxO set corresponding to 40 snapshot, i.e., the set that gets the 7™ multisignature
on snapshots (SNg = Up);

'ﬂz

. T] the transaction set corresponding to SN;, formally defined via Ty = 0, and T 10

= J
Reach” (T') where T is the set proposed in (reqSn, j, T);

® Cenain: keeps track of “transactions on chain” and is defined as follows: upon (successful) close
resp. contest with & for 7, let Cenain <= Ts UT', where (-, 5,T) is the output of Close(Kagg,17,¢)
resp. Contest(K,gg,7,&);

® SNcyr,;: latest confirmed snapshot as secen by party p;.
Lemma 1 (Counsistency). The basic head protocol satisfies the CONSISTENCY property.

Proof. Observe that C; U 5j - 5} since no transaction can be confirmed without every honest
party signing off on it. Since parties do not sign conflicting transactions, Up o S; # L. Thus,
UoO(CiUCj)#J_ O

Invariant 1. Consider a conflict-free execution of the basic head protocol in presence of a network
adversary. Then, for any transaction tx input to the protocol via (new) the following holds with
respect to any parties p; and p;:

Vo : Ly otx £ L= 3T > 49t >T: LV otx £ L V txe Oy

K3

where the superscript - indicates the time when the respective variable is evaluated.

—~(to)

Proof. Assume that party p; sees tx at time tq and £; " otx # 1. By conflict-freeness and full

delivery we get that, eventually, each party p; holds C; o) o C, clio) . By this time ¢, either E() otx #* 1
or tx € Cg-) (as we have conflict-freeness, and C C N). O

Lemma 2 (Conflict-Free Liveness). The basic head protocol achieves CONFLICT-FREE LIVE-
NESS.

29

Proof. We demonstrate that a transaction tx issued by a player p; will eventually be confirmed by
every player p;. By conflict-freeness, in (new, tx) we have that £; o tx # L.

Assume that tx ¢ 5]', i.e., that p; has not seen tx confirmed yet. As soon as p; enters (or gets
reactivated from the wait queue) (reqTx, tx) under the condition £jotx # L (eventually guaranteed
by Invariant 1), by conflict-freeness, also ﬁj otx # L holds, and p; acknowledges the transaction.
Thus, every p; eventually acknowledges the transaction, and tx € ﬂie[n]éi. O

Invariant 2. Consider an arbitrary uncorrupted party p;. Let T be the set corresponding to
SNeur,i- Then, TUT; = C;, where T; is the set T of p;.

Proof. Observe that the invariant is trivially satisfied at the onset of the protocol’s execution.
Furthermore, each time a new transaction is confirmed via confTx, both 7; and C; grow by the
newly confirmed transaction, while T remains unchanged.

The only other time one of the sets T, T, or C; change is when a new snapshot is confirmed
via confSn. In such a case, note that C; stays the same while any transaction removed from T is
considered by the new snapshot and thus added to T. Hence, the invariant is still satisfied. O]

Invariant 3. TO - Tl - TQ C....

Proof. Let p; be an honest party. It is easily seen that the set of transactions considered by a new
snapshot always includes the set considered by the previous snapshot since the set of transactions

T in a reqSn satisfies that SNy ; 0 Reach”(T) # L, (this is implied by Invariant 2). O
Invariant 4. Cehain grows monotonically (w.r.t. C).

Proof. Consider operation Contest(Kagg,n,€) and let n = (Uy, sy, 1;) and § = (U, s,5,7). Note
that before the operation Cepain = Ts, U T, Consider now the set 7™ in the output (-,-,7*) of
Contest. Note that after the operation Cepain = T UT*. Observe that:

e Since s > s, Invariant 3 implies that a transaction tx € TSW is also in TS.

e If a transaction tx € T; is not in 7%, then s > s, and the transaction is consumed by the
snapshot with number s, i.e., tx € Tg.

Hence, Cehain grows monotonically.]
Invariant 5. For alli € Heont, Ci € Coehain-

Proof. Take any honest party p; and let 5 be the current snapshot number at p;, i.e., SNeyr,; = Tg.
Recall that, by Invariant 2, C; = T5UT;. Consider a close or contest operation by p; as well as the
output (U, s, T™*) of Contest, and observe that after the operation Cehain = T, UT*. By Invariant 3,
T; C T, and, by a similar argument as in the proof of Invariant 4, if tx € T, is not in 7%, it must
be in T 5. Hence, C; C Cechain. Furthermore, since Cehain grows monotonically (Invariant 4), the
invariant remains satisfied. O

Invariant 6. For all uncorrupted parties p;, | i 6]' CS;.

Proof. Honest parties will only output (conf, tx) if there exists a valid multisignature for tx, which
implies that each honest party output (seen, tx) just before they signed tx. O

Invariant 7. For any j, T; C Nicy Ci-

30

Proof. Only transactions that have been seen as confirmed by all honest parties can ever be included
in a confirmed snapshot. O

Invariant 8. Cechain € (Ve S;.
Proof. Let n = (U,s,T). Observe that Cchain = T, UT. Consider a transaction tx € Cehain.
o If tx € Ty, then tx € Nien Ci € Nien S; by Invariants 7 and 6.

o Iftx € T, then tx € [,y S, since no transaction can be confirmed without being seen by all
honest parties.

O]
Lemma 3 (Soundness). The basic head protocol satisfies the SOUNDNESS property.

Proof. Let n = (U, s, T) be the value of 7 just before applying Final(n, Ufinal). Clearly, the only set

Usinal that will be accepted by Final is Uy o (TS UT). By definition Ts UT = Cecpain. Soundness now
follows from Invariant 8. Ll

Lemma 4 (Completeness). The basic head protocol satisfies the COMPLETENESS property.

Proof. Follows from Invariant 5 and an argument similar to that in the proof of Lemma 3. Ol

7 Experimental Evaluation

We will now investigate the performance of the Hydra protocol in terms of both latency (transac-
tion settlement time) and throughput (rate of transaction processing, TPS), using timing-accurate
simulations. The simulations will demonstrate that Hydra is optimal in achieving fast transac-
tion settlement, and we employ baselines to systematically gain insight into the transaction-rate
performance characteristics of the protocol.

In order to determine how quickly transactions settle in Hydra, and at which rate they can be
processed, we have to consider the following factors:

Opening and closing of a head. This consists of creating and submitting the commit/decommit
transactions, and waiting until they are confirmed to be in the chain.

The performance of the head protocol. Given a geographical distribution and CPU /network
capacity of the head nodes, how long does it take to exchange the messages that lead to transactions
and snapshots being confirmed?

Limitations on in-flight transactions. When a player wants to send two transactions, where
one uses the change from the other, they have to defer sending the second transaction until they
have confirmation for the first. Furthermore, players may want to prevent an excessive number of
confirmed, but not snapshotted transactions to keep decommits smaller. Together, this limits the
number of in-flight (submitted but not yet confirmed) transactions that any one node can have.

31

The value at risk. To minimize this, players may wait for some transactions to be confirmed
before sending more transactions, further limiting the number of in-flight transactions.

Since the time for opening and closing a head is largely dependent on the underlying layer-
one protocol and can be amortized over the head’s lifetime, we do not cover this aspect in our
simulations. Furthermore, to simplify the simulations, we model the effect of a finite UTxO by
directly limiting the number of in-flight transactions per node. Thus, we focus the simulations on
the execution of the head protocol, as specified in Fig. 10.

7.1 Methodology

The experimental setup involves a fixed set of nodes, with a specified network bandwidth per
node and geographic location of each node that determines the network latency between each pair
of nodes. Each node submits transactions with a specified transaction concurrency c: it sends
¢ transactions as fast as its resources allow, and then sends another one whenever one of the
transactions it sent previously gets confirmed. This controls the number of inflight transactions to
be ¢ per node. Snapshots are performed regularly: nodes take turns to produce snapshots, and
whenever the current leader has at least one confirmed transaction, it will create a snapshot with
all the confirmed transactions it knows about.

In order to properly gauge the simulation results, we compare it to baseline scenarios that are
sufficiently simple to facilitate optimistic performance limits exactly. We derive those limits by
considering each sequence of events that has to happen in order for a number of transactions to
be confirmed, and summing up the time for each event in those sequences. In particular, we have
three resources that potentially limit the transaction rate:

1. The CPU capacity at each node determines how fast transactions can be validated, and
signatures be created or verified;

2. The inbound and outbound network bandwidth limits how many message bytes can be received
and sent by each node in a given time;

3. Each message between two nodes is delayed by the network latency between those nodes.

Depending on the configuration of the system, the most utilized of these resources will limit the
transaction rate. This is an idealization: in a real execution of a protocol, contention effects will
cause even the scarcest resource to be blocked and idle occasionally. We thus expect experimental
results to be bounded by the baselines, and interpret the difference as the impact of contention
effects. We consider the following baselines:

Universal Baseline: Full Trust. To quantify the price we pay for consensus in Hydra, we
compare our simulations with a scenario where we assume perfect trust between all participants;
i.e., we only distribute the knowledge on transactions, without trying to achieve consensus. In
this scenario, nodes submit transactions (after checking that they are valid). Other nodes just
acknowledge that they have seen them (without validating or signing them). We still consider the
effect of having a finite transaction concurrency.

This baseline sets an upper limit for the transaction throughput of any protocol that distributes
and validates transactions in a distributed system. Furthermore, for any consensus protocol, we
should expect some additional overhead (which might or might not reduce the actual throughput
in different regions of the parameter space).

32

Hydra Unlimited. This scenario resembles the head protocol, but executed under ideal cir-
cumstances, ignoring contention effects as described above. In contrast to a real execution of the
protocol, where the snapshot size is an emergent property depending on how fast transactions
are confirmed, in the baseline, we can directly control how many transactions are contained in a
snapshot.

Sprites Unlimited. In order to compare to prior work, we also include a baseline according to
an optimal execution of the off-chain protocol from [31]. A deciding difference to the head protocol
is that in Sprites, all nodes send their inputs to a leader, which collates them and collects signatures
for a whole batch of transactions. Compared to Hydra, this batching reduces the demand on CPU
time and number of messages, since less signatures have to be performed and shared, at the expense
of additional network roundtrips and higher network bandwidth usage at the current leader node,
which has to send the batch of all transactions to every other node.

infinite concurrency finite concurrency

1000

transaction throughput [tx/s]

100
0.1 1.0 100 0.1 1.0 10.0
bandwidth [Mbit/s]
Baseline —— Hydra Unlimited —— Sprites Unlimited Universal
Snapshot size 1 === 2 = 5 ——- 10 — infinite

Figure 14: Example baselines scenarios, for finite and infinite transactions concurrency.

We show examples of baselines in Fig. 14. We draw the different baseline scenarios using
different colours. For the Hydra Unlimited case, we have multiple lines, depending on the number
of transactions in each snapshot; the more transactions are bundled in any one snapshot, the lower
the overhead per transaction.

The left panel shows the limit of infinite transaction concurrency. In that case, the network
roundtrip time can be perfectly amortised and is not a limiting factor. The resulting transaction
rate has a knee shape: it is linear in the network bandwidth as long as that is the limiting factor,
and turns constant once the limit from CPU time dominates. Comparing the Hydra Unlimited
and Universal baselines, we see that there is some difference in the low bandwidth region, which
is due to the multisignatures being sent in Hydra. In the region where CPU time is relevant, the
difference is more pronounced, due to the computational cost of multisignatures. Looking at the
Sprites Unlimited baseline, we see the tradeoff in batching transactions: the computational work is
significantly reduced, by signing just a single large batch of transactions®. This comes at the cost
of increasing the network traffic at the leader node, which has to send every transaction to every

5In the limit of infinite transaction concurrency, we take the batch size in Sprites to be unlimited as well.

33

other node. Note that in this picture, we only used a cluster of three nodes; for larger clusters, the
demand on the leader node’s network bandwidth would be even higher.

To get a more realistic picture, let us turn to the right panel. Here, we have a finite transaction
concurrency, and the network roundtrip time is large enough to become the limiting factor (instead
of CPU time) once we have enough bandwidth. Comparing Hydra Unlimited to the Universal line,
we see that both flatten at about 580 TPS. The limit from network latency is the same for both
baselines, since the number of roundtrips to confirm a transaction is the same (the messages are
larger for Hydra Unlimited, but this only places a higher demand on the bandwidth). Interestingly,
if we make a snapshot for each single transaction, we are still limited by CPU power, but as soon
as we only make a snapshot every other transaction, the overhead from producing snapshots is
small enough to not matter, compared to the limit from network latency. In this picture, the
Sprites Unlimited baseline is well below the others. The demands on bandwidth — particularly, the
network bandwidth of the leader node — is much larger than for the other protocols, and bundling
transactions centrally before sending them to each node requires an additional roundtrip.

Note that devising an unlimited baseline for a given protocol, and comparing it to a universal
baseline or those of other protocols, is not only valuable for evaluating an implementation, but also
as a tool to predict possible performance during the protocol design phase.

7.2 Implementation

In the following, we will describe how we implemented the simulations for the head protocol. The
implementation is available at https://github.com/input-output-hk/hydra-sim.

We model the head nodes using concurrent threads which exchange the protocol messages from
Fig. 10 via channels. We use the io-sim library [2], which allows us to write concurrent code, and
then either execute it directly as threads in the Haskell runtime system, or run the same code in a
simulation of the runtime system. The latter yields an execution trace of the code very quickly, as
it delays a thread by just increasing a number representing the thread’s clock, instead of actually
pausing the thread. As we describe below, the simulations make heavy use of thread delays, so this
allows us to perform simulations much more quickly. We can also manually insert trace points at
relevant points in the protocol (such as when a transaction is confirmed). Measuring, for instance,
the confirmation time for a message, can then be done by simply subtracting timestamps of the
events “transaction is submitted” (new) and “transaction is confirmed” (confTx).

Cryptographic Operations. Instead of using real cryptographic functions for multisignatures,
we use mock functions that do not perform any calculations, but instead allow for a tunable delay
of the thread that is performing the operation.

Message Propagation. Before being sent across the network, each message has to be serialized
and pass the networking interface, which takes time linear in the message size. So the event of
a message being sent by a node does not correspond to a single point in time, but rather to a
time interval. We take that into account by modeling each message by its leading and trailing
edge. The time distance between leading and trailing edge—the serialization delay—of a message
is determined by its size and the bandwidth of the node’s networking interface. We capture this with
a parameter S, giving the delay per byte. Furthermore, we take into account that the networking
interface can only start sending the next message after the trailing edge of the previous message
has been sent. When the network is sufficiently busy, this can be a point of contention.

34

We model the network by a delay G between each message edge leaving the sending node and its
arrival at the target node. The parameter G is determined by the distance between the two nodes
and is independent of message size.” We use real data measured between Amazon Web Services
data centers.

Once the leading edge of a message reaches the receiving node, we put its incoming networking
interface into a busy state, for a time given by the size of the message and the bandwidth of this
node. Finally, when the trailing edge is received, the message contents is placed into the local
inbox, so that the node can start acting on the message.

If we only consider a single message, this model will just lead to a delay of the whole message
determined by G, the message size, and S of the slower node. But once we have multiple messages
in the system, it also correctly accounts for the contention at the outgoing and incoming connection
points. The contention introduces variance, since messages may or may not have to wait at either
end of the network.

Simulation optimizations. We applied two refinements that optimize the performance without
changing the security of the protocol. First, when submitting a new transaction via new, a node
will validate the transaction, and then send reqTx to every party, including itself. Every party,
upon receiving reqTx, will then validate the transaction again. For the sending node, this is not
necessary (it just validated the same transaction), so we skip the second validation on the same
node. Second, the specification of the protocol states that handlers are executed strictly one after
the other. Avoiding concurrency in this way simplifies the analysis of the protocol. But there is one
case where we can safely perform actions in parallel: upon receiving reqTx (and similarly reqSn),
a node will validate the transaction or snapshot against its local state, and, if appropriate, sign it
and reply. The action of signing does not access the state of the node, so we can safely perform it
concurrently with handling subsequent events.

These are fairly trivial changes, that any concrete implementation would apply, so we felt it
was appropriate to reflect them in our simulations, as well as in the baselines.

7.3 Experimental Results

We performed experiments for three clusters with different geographic distributions of nodes: a local
deployment of three nodes within the same AWS region, a continental deployment across multiple
AWS regions on the same continent (Ireland, London, and Frankfurt), and a global deployment
(Oregon, Frankfurt, and Tokyo). For each of those clusters, we measured the dependency of confir-
mation time and transaction throughput on bandwidth and transaction concurrency, and compare
with the baselines described above. The numerical results depend on a number of parameters that
we set, representing the time that elementary operations within the protocol take. We use the
settings described below.

Transaction size. We use two representative transaction types: (1) simple UTxO transactions
with two inputs and two outputs, whose size is 265 bytes, and (2) script transactions containing
larger scripts of 10kbytes. We use transaction references of 32 bytes. For each message, we allow
for a protocol-level overhead of 2 bytes.

"The messages in the Hydra protocol are small enough to ignore TCP window effects that would introduce a
dependency on the message size.

35

Concurrency 1 Concurrency 5 Concurrency 10
1000
=
o
Q
o8
100
2
251000
5
£
Q
3 g
£ 5
£ g
- 100 5
9 -
B
@®
n
c
o
100
@
o
o
SR
107,
0.1 1.0 10.0 0.1 1.0 . 10.00.1 1.0 10.0
bandwidth [Mbit/s]
Baseline —— Hydra Unlimited —— Sprites Unlimited Universal

Snapshot size 1 --- 2 — infinite

Figure 15: Transaction rates for the Hydra head protocol, compared with the baseline scenarios.
Simple UTxO transactions with 2 inputs and 2 outputs.

Transaction validation time. This is the CPU time that a single node will expend in order to
check the validity of a transaction. We use conservative values here: 0.4 ms for simple transactions,
and 3 ms for script transactions.

Time for multisignature operations. We performed benchmarks for the multisignature scheme [11]
resulting in the following estimates: 0.15ms for MS-Sign, 0.01 ms for MS-ASig, and 0.85ms for
MS-AVerify.

Transaction throughput. Figs. 15 and 16 display results for ordinary UTxO and script trans-
actions, respectively. The different rows correspond to the different geographical setups of the
clusters, while the columns differ in transaction concurrency.

As expected, the Universal baseline consistently gives the highest transaction rate. For Hydra
Unlimited, we see three baselines, for different snapshot sizes (depicted by dotted, dashed, and
solid lines). In some cases, they coincide. Those are the configurations where we are limited by
the network latency: performing snapshots increases the demand on CPU time and bandwidth (for

36

Concurrency 1 Concurrency 5 Concurrency 10

18207

|ejusunuo)

transaction throughput [tx/s]
o
[=]

-
o
(=)

1eqo|9

101 «

10 10
bandwidth [Mbit/s]

Baseline —— Hydra Unlimited —— Sprites Unlimited Universal
Snapshot size 1 --- 2 — infinite

Figure 16: Transaction rates for the Hydra head protocol, compared with the baseline scenarios.
Script transactions.

the additional signatures and messages), but it does not increase the number of sequential network
roundtrips that have to be performed to confirm transactions (the messages for snapshots and for
transactions propagate through the network concurrently).

Comparing the Universal and Hydra Unlimited baselines, we see that they are identical whenever
the transaction rate is limited by the network latency. That can be explained since the difference
between the two baselines differ only in their demand for CPU time (for creating and validating
signatures) and bandwidth (for sending signatures). Note that for script transactions (Fig. 16), the
demands on CPU are higher anyway, so that the additional cost for the multisignatures generally
has a much lower impact on the transaction rate.

Looking at the Sprites Unlimited baseline, we observe the effect of batching via a central leader:
the leader needs to send all transactions to every other node, and so its networking interface is
frequently a bottleneck. Also, we see the additional roundtrip between the leader and every other
node reducing the TPS whenever the network latency is the limiting resource. But when we have
enough concurrency to form large batches, and get to the region where we are limited by CPU
time, the savings by signing batches instead of individual transactions become apparent, and the

37

Concurrency 1 Concurrency 5 Concurrency 10
—1.00
Iﬂl []
(]
E
-—] .
c
Re]
© 1 l
£
%0.10 1 ' 7
[o]
g ! [}]
2 ' (RN
5]
' 2
@
i
©]
ot
*+0.01
0.1 1.0 10.0 0 1.0 10.0

A1 1.0 10.0 0.1
bandwidth [Mbits/s]
Node Location - Frankfurt

Figure 17: Confirmation times for simple UTxO transactions, in a cluster located in one AWS
region. From panel to panel, we increase the transaction concurrency. The theoretically minimal
confirmation time is represented by a dashed line.

Sprite baseline nearly reaches the Universal one.

Comparing the experimental results with the Hydra Unlimited baseline, we see that in most
cases, the simulation of the protocol approximates the optimal curve quite well. We only get
sizeable differences for low concurrency and insufficient bandwidth.

Regarding snapshots, the figures reveal that performing snapshots has a negligible impact on
the transaction rate: apart from the regions where bandwidth is the limit, the baselines for different
snapshot sizes only differ when we are CPU bound, which requires enough transaction concurrency
to amortize the network latency. But for large concurrency, we also get large snapshots, so the
overhead from snapshots per transaction is small.

Transaction confirmation times. One aspect where Hydra really shines is fast settlement:
as soon as all parties have signed a transaction, and the sending node has aggregated a valid
multisignature, this multisignature provides a guarantee that the transaction can be included into
the ledger of the layer-one system. We can derive a minimal confirmation time by adding up the
times for validating a transaction two times (once at the issuing node, once at every other node),
sending the reqTx and ackTx messages across the longest path in the network, and creating and
validating the aggregate signature.

Fig. 17 illustrates the conditions under which we achieve minimal confirmation time. In the
first panel, we have a transaction concurrency of one. We see that, with enough bandwidth, we get
very close to the minimal validation time, indicated by the line. In the other panels, we increase
the concurrency. While this increases the total transaction throughput by sending transactions in
parallel, individual transactions are more likely to be slowed down by congestion in the networking
interfaces. Hence, confirmation time and its spread increase.

In clusters across different regions, the confirmation time generally depends on which node
sent the transaction. For example, in Fig. 18, we see that the transactions from Oregon tend to
get confirmed faster than those from Frankfurt or Tokyo. This is because confirmation requires a
roundtrip to the farthest peer, and Frankfurt and Tokyo are farther away from one another than

38

[Concurrency 1 Concurrency 5 Concurrency 10

—1.07
lﬂl |
(]
£
s '
o
©
= | i
= 1
= iy o L . S N "SR | ot . Y YO Y | ot . S S "W 0}
[o]
o
c
<l
©
@
»n
c
©
=

0.14

10 10
bandwidth [Mbits/s]

Node Location = Frankfurt/Tokyo ~ Oregon

Figure 18: As Fig. 17, but for script transactions in a cluster spanning the AWS regions Oregon,
Frankfurt, and Tokyo. Here, the minimal confirmation time depends on which node is sending
the transaction, so we have two optimal lines.

either of them is from Oregon.
We see that even for script transactions and a globally distributed network, we consistently
achieve settlement well below half a second if we provide enough bandwidth.

Larger clusters. In addition to three node clusters, we have also evaluated how the results
depend on cluster size by running simulations with clusters of up to 100 nodes (located in the same

AWS region):

e The transaction rates of a larger cluster are close to those for a three-node cluster. This is
due to the fact that the amount of computation per node per transaction does not depend
on the number of participants®.

e The bandwidth needed at each node to reach the maximal transaction rate does depend on
the cluster size. This is not surprising, since each node needs to communicate with more
peers.

e For the same reason, the confirmation time of transactions increases with the cluster size.

Note that these simulations still use a communication pattern where everyone sends messages to
everyone, which is not optimal for large clusters. Instead, we ought to construct a graph to broadcast
messages, keeping the number of peers for direct communication small for each participant. An
advantage of the Hydra approach is that we can easily have different versions of the head protocol,
or different implementations of the same head protocol, optimized for different cluster sizes.

8Note that aggregating signatures and verifying an aggregate signature do depend on the number of participants.
However, this does not impact the transaction rates in our simulations, for three reasons: i) we assume that we
aggregate the verification keys once at the beginning of the head protocol, and only perform verification against
the already computed aggregate verification key during the protocol, ii) even for 100 participants, combining the
signatures is quicker than producing a single signature, iii) combining signatures is performed concurrently with the
rest of the protocol (see Section 7.2).

39

