
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Functional Blockchain Contracts
— DRAFT — DRAFT — DRAFT —

Manuel M. T. Chakravarty
Roman Kireev

Kenneth MacKenzie
Vanessa McHale
Jann Müller

Alexander Nemish
Chad Nester

Michael Peyton Jones
Simon Thompson
Rebecca Valentine
Philip Wadler

IOHK
firstname.lastname@iohk.io

Abstract
Distributed cryptographic ledgers—aka blockchains—should
be a functional programmer’s dream. Their aim is immutabil-
ity: once a block has been added to the chain it should not
be altered or removed. The seminal blockchain, Bitcoin, uses
a graph-based model that is purely functional in nature.
But Bitcoin has limited support for smart contracts and dis-
tributed applications. The seminal smart-contract platform,
Ethereum, uses an imperative and object-oriented model of
accounts. Ethereum has been subject to numerous exploits,
often linked to its use of shared mutable state by way of
its imperative and object-oriented features in a concurrent
and distributed system. Coding a distributed application for
Ethereum requires two languages: Javascript to run off-chain,
which submits transaction written in Solidity to run on-chain.

This paper describes Plutus Platform, a functional block-
chain smart contract system for coding distributed applica-
tions on top of the Cardano blockchain. Most blockchain pro-
gramming platforms depend on a custom language, such as
Ethereum’s Solidity, but Plutus is provided as a set of libraries
for Haskell. Both off-chain and on-chain code are written in
Haskell: off-chain code using the Plutus library, and on-chain
code in a subset of Haskell using Template Haskell. On-chain
code is compiled to a tiny functional language called Plu-
tus Core, which is System Fω with iso-recursive types and
suitable primitives.

Plutus and Cardano are available open source, and Plutus
Playground provides a web-based IDE that enables users to
try out the system and to develop simple applications.

DRAFT, 2019, Submitted
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords Smart contracts, blockchains, Haskell, metaprog-
ramming, System F, embedded languages

ACM Reference Format:
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie,
Vanessa McHale, Jann Müller, Alexander Nemish, Chad Nester,
Michael Peyton Jones, SimonThompson, Rebecca Valentine, and Philip
Wadler. 2019. Functional Blockchain Contracts: — DRAFT—DRAFT
— DRAFT —. In Proceedings of DRAFT. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Distributed cryptographic ledgers (commonly called block-
chains) are shared, immutable, distributed log data structures
comprising a sequence of blocks with multiple transactions
each. The concrete representation of the blocks and trans-
actions uses cryptographic techniques to render the ledger
tamper-resistant, and the overall system uses a monetary
incentive system to ensure the collaboration of the providers
of the distributed computing infrastructure [Narayanan et al.
2016]. Bitcoin, the seminal proof of the feasibility of the
blockchain concept, suffers from a range of problems, in-
cluding excessive energy usage [Hern 2018] and minimal
support for custom transaction validation. Without custom
validation, the ledger is essentially confined to providing
simple accounting functionality.
Subsequent proposals, such as Ethereum [Wood 2014],

provide a general-purpose programming language (in Eth-
ereum’s case, Solidity [Sol 2019]) to enable almost arbitrar-
ily complex validation rules. However, this additional ex-
pressiveness comes at the cost of a semantically complex
computational model, typically favouring object-based pro-
gramming models that introduce shared mutable state into
an already concurrent and distributed system. Moreover,
they rely on new, custom-designed languages requiring new

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

toolchains, libraries, educational material, supporting com-
munities, and so on. As a consequence, it is hard to formally
or informally reason about the behaviour of the resulting
applications: this leads to a wide range of vulnerabilities,
some of which have become infamous [Falkon 2017].
The issue of semantic complexity is aggravated by the

fact that complete decentralised applications require more
than just the on-chain transaction validation code. The ma-
jority of the code is typically off-chain, residing on a user’s
client machine and operating in the context of the user’s
cryptographic wallet —an application that facilitates the man-
agement of crypto-currencies and the creation of new trans-
actions for submission to the blockchain. In systems such as
Ethereum [Wood 2014], on-chain and off-chain code is im-
plemented in different programming languages (preventing
code reuse) and connected via an ad hoc network protocol
(preventing type checking across the network boundary).

Existing proposals favouring functional programming and
a rigorous formal treatment, such as Simplicity [O’Connor
2017], are concerned with on-chain code only and completely
ignore the additional complexity introduced by on-chain off-
chain code composition.
Cardano is a third generation blockchain that solves the

energy usage issue by moving to an energy efficient Proof
of Stake protocol, namely Ouroboros [Kiayias et al. 2017]. It
also uses the functional ledger representation—essentially a
dataflow graph, called the UTxO ledger—on which Bitcoin is
based, but which was abandoned in many later systems for
an object-based representation centring around a notion of
accounts that exchange messages.

The core thesis of this paper is that we can build a purely
functional system on the basis of the UTxO ledger represen-
tation and that we can support both sophisticated (on-chain)
validation rules and off-chain code by way of a single, ex-
isting functional language. We illustrate this for Haskell,
including its Template Haskell [Sheard and Jones 2002] tem-
plate metaprogramming facility, but other languages could
be used as well. More precisely, we make the following con-
tributions:

• We describe a modest extension to UTxO (which we call Ex-
tended UTxO) which gives validation code greater context
awareness and enables one to thread explicit state through
a sequence of transactions (Section 3).

• We show how to use template metaprogramming to embed
on-chain custom transaction validation scripts into off-
chain contract logic code, facilitating code reuse and type
checking between on-chain and off-chain code (Section 4).

• We outline a minimalistic and purely deterministic rep-
resentation of on-chain validation code in the form of a
variant of System F

µ
ω whose semantics are amenable to

fully formal description (Section 5).
• We show that the resulting system is a suitable basis for em-
bedded domain-specific languages, such asMarlowe [Lamela

contribute :: Campaign -> Value -> MockWallet ()
contribute campaign value = do
 when (value <= 0) $
 throwOtherError "Must contribute a positive value"

 ownPK <- ownPubKey
 tx <- payToScript
 (Ledger.scriptAddress (contributionScript campaign))
 value
 DataScript (Ledger.lifted ownPK)

 register (refundTrigger campaign)
 (refundHandler (Ledger.hashTx tx) campaign)

contributionScript :: Campaign -> ValidatorScript
contributionScript campaign =
 ValidatorScript (validator `apply` campaign)
 where validator =

 Ledger.fromCompiledCode $$(PlutusTx.compile
 [|| (\Campaign{..} action contrib tx ->
 let
 PendingTx ps outs _ _ (Height h) _ _ = tx
 isValid = case action of
 Refund -> h > collectionDeadline &&
 contributorOnly outs &&
 $$(txSignedBy) tx contrib
 Collect -> h > deadline &&
 h <= collectionDeadline &&
 totalInputs >= target &&
 $$(txSignedBy) p campaignOwner
 in $$(P.errorIfNot) isValid ||])

core

core

off-chain

on-chain

(A)(B)

(C) (D)

(E) (F)

Figure 1. Plutus Architecture

Seijas and Thompson 2018], a blockchain variant of [Pey-
ton Jones et al. 2000]’s DSL for financial contracts (Sec-
tion 6).

We discuss related work in Section 7 and provide an overview
over the Plutus programming model in the following sec-
tion. All of Plutus is open source [Plutus Team 2019a] and
we provide a Web environment, Plutus Playgrounds, to get
started with writing Plutus contracts [Plutus Team 2019b].

2 The Plutus Programming Model
For the purposes of this paper, we can regard a blockchain
as a ledger consisting of a sequence of transactions that
move cryptocurrency around. In the UTxO model, popu-
larised by Bitcoin, each transaction consists of a set of inputs
(consuming currency) and a set of outputs (supplying cur-
rency). Inputs and outputs of the transactions in a ledger
are connected to form a directed acyclic graph rooted in the
genesis block of the blockchain. At any point, the dangling
(unspent) outputs at the fringe of the graph form a set called
the unspent transaction outputs (UTxO). This UTxO set fully
determines the current state of the chain, and in particular,
the distribution of funds.
Ownership of funds is conveyed indirectly by having

the ability to spend a particular (as of yet) unspent output.
This requires possessing the private cryptographic key that
matches the public key locking the output. More specifically,
a transaction containing an input that spends a given output
from the UTxO set will only be admitted if it is cryptograph-
ically signed with the private key matching the public key
in that output. A transaction is only admitted to the chain
(i.e., it is only valid) if its signatures permit all spending
specified by its inputs and if the sum of the cryptocurrency
values in the outputs is smaller than that in the inputs (the
difference is called the transaction fee and is used to pay for
the infrastructure provided by the blockchain operators).

2.1 Plutus architecture
Figure 1 contains a partial UTxO graph, labelled (A), where
the inputs are in red and the outputs are in black. An input
connecting to an output symbolises that a signature on the

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Functional Blockchain Contracts DRAFT, 2019, Submitted

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

input’s transaction matches the public key in the output.
This is our representation of the blockchain. We will discuss
the UTxO model and our novel Extended UTxO model in
more detail in Section 3.
On the left-hand side of Figure 1 we have a Plutus con-

tract, labelled (B), that contains an off-chain part (green back-
ground) and an on-chain part (blue background). Both on-
chain and off-chain code are interleaved in a single Haskell
program, with on-chain code embedded into off-chain code
using Template Haskell, as explained in Section 4.

Our toolchain—effectively extending GHC using its plugin
support [ghc 2019, Section 13.3]—compiles a Plutus contract
into an off-chain executable (C) embedding the compiled
on-chain code in our core language Plutus Core, which we
elaborate on in Section 5. The off-chain code executes in
the context of a crpytocurrency wallet (D) which holds the
funds to pay for transactions and the cryptographic keys to
sign the transactions. When off-chain contract code submits
a new transaction (E) to the blockchain, it typically locks
(some of) the outputs with some of its embedded Plutus Core
on-chain code.
The validation, and hence inclusion, of these and other

transactions into the chain triggers blockchain events (indi-
cated by the arrow labelled (F)) which are observed by the
wallet. The wallet forwards events that are relevant for its
off-chain contract code to that code, which in turn leads to
new transactions, and so on.
The initial execution of off-chain contract code is typi-

cally triggered by the user of the wallet by way of contract
endpoints (i.e., toplevel functions) that are made accessible
through wallet UI elements. Hence, we may regard off-chain
contract code as a form of plugin for cryptocurrency wallets.

2.2 An example contract: crowdfunding
As an example of a blockchain contract, consider a simple
crowdfunding scenario. One person, the campaign owner,
proposes a project and invites other users of the blockchain,
the contributors, to fund that project by each contributing a
(typically small) fraction of the costs. Part of such a proposal
is the funding target, the minimum amount of funds that need
to be raised to be able to complete the proposed project. If
the funding target has not been reached by a certain time, the
campaign deadline, the project is not viable and it is crucial
that the contributors are refunded. It is also possible that the
campaign owner abandons the campaign and doesn’t collect
the funds, even if the funding target has been reached. To
ensure that the contributors are also refunded in this case,
the campaign is also parameterised by a collection deadline—
i.e., the point in time by which the campaign owner has to
collect the contributions. Let’s have a look at how we can
write such a contract with Plutus.

We start by bundling the contract parameters in the record
type:

data Campaign
= Campaign

{ fundingDeadline :: Slot
— campaign ends at that point

, target :: Ada
— funding target for campaign success

, collectionDeadline :: Slot
— funds need to be collected by that point

, owner :: PubKey
— crypto key needed to collect funds

}

Ada is the cryptocurrency of the Cardano blockchain, Slot
specifies a time frame indirectly via the length of the block-
chain, and PubKey is a cryptographic public key (identifying
the campaign owner, in this case).
For now, let’s just look at the code for the contract end-

point that lets a blockchain user contribute to an existing
campaign—we can regard a contract endpoint as simply an
action defined in the contract that a blockchain user can ex-
ecute through their cryptocurrency wallet. The code makes
use of Plutus library functions qualified with module names
L and W. They originate from the Plutus ledger and wallet
API, respectively.

contribute :: MonadWallet m
=> Campaign -> Ada -> m ()

contribute campaign value = do
unless value > 0 $
throwOtherError "Needs positive value"

ownPK <- ownPubKey — key for refunds to us
let
dataScript = DataScript (L.lifted ownPK)
validator = contributionValidator campaign
valAddress = L.scriptAddress validator
range = W.interval 1 (deadline campaign)

— funding interval
-- generate and submit contribution transaction

tx <- payToScript range validator
(Ada.toValue value) dataScript

-- callback when refund conditions are met
register (refundTrigger campaign)

(refundHandler (L.hashTx tx) campaign)

This contract endpoint takes a campaign specification and
an amount of Ada that the user would like to commit to that
campaign. On the basis of that, the endpoint does two things:
(1) with payToScript it generates and submits a transaction
to the blockchain that pays the stated amount into the cam-
paign in such a manner that the campaign owner can only
retrieve those funds if the campaign is successful, and (2)
with register it registers an event trigger (essentially a con-
ditional callback) monitoring the blockchain for whether or
not the campaign proceeds successfully: if not, the callback
will submit a transaction claiming a refund.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

In terms of the architecture in Figure 1, contribute is part
of the (green) off-chain code and an invocation of the con-
tract endpoint contribute originates in the wallet (D) and
executes in the off-chain code (C). It submits a transaction
(E) to the blockchain (A).

Two crucial components of the transaction’s single output
(the black outgoing edge) are the output’s validator script
(validator) and data script (dataScript). The validator
script is on-chain code that guards the output in such a
manner that it can only be used under the conditions stip-
ulated in the contract. In the crowdfunding contract, the
campaign owner can use it only (a) in case the campaign is
successful and (b) only between the funding deadline and
the collection deadline. Moreover, a contributor can only use
the output holding their own contribution and only if the
campaign fails. The data script is contract state information
that may be used by the validator to establish context. In
the crowdfunding campaign, it holds a public key ownPK of
the wallet belonging to the contributor of that particular
commitment. This enables us to guarantee that refunds go
to the right person.

Both the validator and data script are executable on-chain
code represented by expressions in Plutus Core,1 the Sys-
tem F -based core language that we discuss in more detail
in Section 5. There is a crucial difference between the two,
though: a transaction only contains the cryptographic hash
of the validator script (valAddress in the definition of con-
tribute), but it is accompanied by the full value of the
dataScript. We will discuss the reasons for this difference
in detail in Section 3. However, it is worthwhile pointing
out that determining the validator script hash only after the
contributionValidator has been applied to the specific
campaign in question provides us with a campaign-specific
script address, which serves as a unique, unforgeable identi-
fier for the contract.2

The validator script for crowdfunding contributions looks
like this:
data CampaignAction = Collect | Refund

contributionValidator :: Campaign -> ValidatorScript
contributionValidator campaign =
ValidatorScript
(L.applyScript validator (L.lifted campaign))

where
validator = $$(L.compileScript [||

— here begins the on-chain code
λCampaign{..} (contributor :: PubKey)
(action :: CampaignAction) (tx :: PendingTx) ->

let

1This is purely functional code, so we don’t distinguish between code and
data.
2It is effectively unforgeable due to the use of a collision-resistant, crypto-
graphically strong hashing function—Cardano specifically uses two rounds
of SHA256 on a serialised version of the script.

PendingTx inputs _ _ _ slots _ _ = tx
— transaction information

in
case action of
Refund -> — validate a refund action
(L.from collectionDeadline)

`L.contains` slots
&& tx `V.txSignedBy` contributor

Collect -> — validate fund collection
let campaignTotal

= sum [Ada.fromValue value
| PendingTxIn _ _ value <- inputs]

collectionRange
= deadline

`L.interval` collectionDeadline
in

collectionRange `L.contains` slots
&& campaignTotal >= campaignTarget
&& tx `V.txSignedBy` campaignOwner

||])

The on-chain validation logic is defined by validator and
wrapped in a typed TemplateHaskell quotation in [|| .. ||]
brackets, which is fed to a function L.compileScript in a
Template Haskell splice. We will discuss the details of our use
of Template Haskell in Section 4. For the moment, it suffices
to say that we use a combination of Template Haskell and
GHC plugins to employ GHC’s frontend and desugarer to
provide us with GHC Core [Sulzmann et al. 2007] for the
quoted on-chain code, which we translate to Plutus Core
with our own custom compiler.

The on-chain code is a lambda abstraction that gets (1)
the campaign parameters, (2) the contributor’s public key, (3)
the kind of CampaignAction to validate, and (4) the trans-
action that wants to make use of the funds contributed to
the campaign (i.e., this is the transaction that we need to
validate for conformance to the contract). After extracting
the set of inputs and the range of slots (in which this
transaction can be validated), validation is a matter of distin-
guishing between the two situations in which spending from
a campaign commitment is permitted. In case of a Refund,
we need to have a transaction whose slot range (slots) is
entirely after the campaign collectionDeadline and the
transaction needs to be signed by whoever committed the
contribution that we are about to spend. In the second case,
where the campaign owner wants to Collect the contribu-
tions, we must ensure that (1) the transaction slot range is
entirely in between the campaign deadline and the cam-
paign collectionDeadline, (b) the total campaign funds,
campaignTotal, at least matches the campaignTarget, and
(c) the transaction is signed by the campaignOwner.

As in this example, validator scripts are always predicates
that check the conformance of a transaction with the rules

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Functional Blockchain Contracts DRAFT, 2019, Submitted

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

of the contract under contractual parameters, such as the
campaign parameters in our example, and contract state spe-
cific to the transaction output that the validator guards, such
as the contributor’s identity here (by proxy of their public
key). In other words, on-chain code—in Plutus—does not
compute anything or update any blockchain or other state:
instead, it is a pure, side-effect free predicate. We argue that
this is very powerful. It simplifies reasoning about on-chain
code, both concerning functional correctness and resource
consumption. This directly addresses two core problems that
have plagued Etherum since its inception and led to many
vulnerabilities and exploits.

Despite the benefits for reasoning about validator seman-
tics, restricting these scripts to be pure predicates may also
seem limiting. However, we recover the seemingly lost ex-
pressiveness by combing the on-chain with off-chain code
in an extended UTxO ledger model that we detail in the
following section.

3 The Extended UTXO Ledger Model
While Bitcoin introduced the graph-based ledger model com-
monly called a UTxO (unspent transaction output) ledger [Nara-
yanan et al. 2016, Chapter 3], it only provided very limited
capabilities for user-defined computation [Bit 2018; Bartoletti
and Zunino 2018]. The limitations are twofold:
1. The BitCoin Script language constrains programs to be of

a limited size and provides barely any control structures
(essentially only conditional statements). The primitive
operations that can be used in BitCoin Script are also very
limited (for example, the division operation was originally
included but was subsequently disabled).

2. The computational context available to a BitCoin Script
program is very constrained. For example, it cannot even
inspect the transaction that is currently being validated; it
does have access to the hash of the transaction, though.

We address the first limitation in Section 5, where we discuss
our on-chain code representation, Plutus Core. We address
the second by defining an Extended UTxO model which pro-
vides on-chain scripts with sufficient context to pass contract
state between transactions and to impose invariants (such as
contract conditions and obligations) that hold across entire
chains of transactions.

3.1 Transactions
Before we dive into scripts, we start by looking at the detailed
structure of the transactions that make up the blockchain
ledger. The fundamental transaction datatype is
data Tx = Tx {

txInputs :: Set.Set TxIn,
— The inputs to this transaction

txOutputs :: [TxOut],
— The outputs of this transaction

txForge :: Ada,

— Currency forged by this transaction
txFee :: Ada,
— The fee for this transaction

txValidRange :: (Slot, Slot),
— The validity interval for this transaction

txSignatures :: Map PubKey Signature
— Signatures of this transaction

}

The inputs and outputs are the connections to preceding and
succeeding transactions as already discussed. Forged cur-
rency is new currency introduced into the ledger, whereas
the fee is the portion of the overall transaction value that is
payed to the slot leader that integrates the transaction into a
block on the blockchain. One new block of the blockchain
(containing many transactions) is created by the current slot
leader in every slot, a fixed time interval defined by the
Ouroboros proof-of-stake blockchain protocol. The current
slot count provides a notion of time passed since the incep-
tion of the blockchain. The validity interval determines the
slot range in which the current transaction can be validated:
outside this interval the transaction is invalid.
Each transaction is associated with a unique identifier

of typeTxID, which is simply the cryptographic hash of a
serialised representation of the transaction without the sig-
natures. The signatures, in fact, sign the transaction hash
and not the entire transaction itself.

The outputs of a transaction, txOutputs, are a list of
data TxOut = TxOut {

txOutAddress :: TxID,
— ID of the payment target

txOutValue :: Ada,
— Value of output

txOutType :: TxOutType
—What sort of output is it?

}

Outputs always pay a fixed value of a cryptocurrency to
an address. In the simplest case, this address identifies a
cryptographic key pair contained in a cryptographic wallet.
This is generally called a pubkey payment and used for direct
payments between two users of a blockchain. This case is
covered by the first variant of the TxOutType:
data TxOutType

= PayToPubKey PubKey — pubkey payment
| PayToScript DataScript — script payment

We shall discuss the second variant in the next subsection.
Outputs of one transaction get consumed by the inputs of

subsequent transactions. To this end, each input specification
TxIn contains an output reference of type TxOutRef:
data TxIn = TxIn {

txInRef :: TxOutRef,
txInType :: TxInType

}

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

data TxOutRef = TxOutRef {
id :: TxID,
— ID of previous transaction
index :: Int
— Index into the referenced transaction's outputs
}

An output reference of type TxOutRef uniquely identifies an
output within the existing ledger by a combination of the
transaction identifier containing the output and an index into
the list of outputs of that transaction. Moreover, transaction
inputs also contain a component txInType, which needs to
line up with the TxOutType of the consumed output.
data TxInType
= ConsumePublicKeyAddress PubKey
| ConsumeScriptAddress ValidatorScript

RedeemerScript

When a transaction input txIn :: TxIn refers in its txInRef
to a transaction output txOut :: TxOut by specifying the
identifier id of that output’s transaction and the index of
the txOut in id’s list of outputs, we say that txIn spends
txOut. Given the a blockchain as a list of transactions, we
can determine the set of all outputs which appear in a trans-
action but are not spent by an input of any other transaction.
This set of outputs is called the unspent transaction output
(UTxO) set. It determines all the value (funds) that can still
be spent and is thus the primary data structure representing
the current state of a UTxO ledger.

3.2 Validation
A crucial aspect of adding new transactions to an existing
chain is transaction validation. The purpose of transaction
validation for pubkey payments is to ensure the monetary in-
tegrity of the cryptocurrency processed in those transactions.
The central validation conditions are the following:
1. Each output of every transaction may be spent at most once

(by an input of another transaction). This is often called
the no-double-spend rule.

2. Each input of every transaction must contain a transaction
identifier id (in its txInRef) that refers to a transaction that
actually exists in the chain. Moreover, the output index
associated with the id in the TxOutRef value must exist in
the referenced transaction id.

3. If a transaction id contains an input that spends an output
txOut, then the transaction must contain a signature in its
txSignatures field that was created with the private key
matching the public key in txOut’s txOutType. In other
words, owning the private key matching the public key
of an output amounts to owning the value txOutValue in
that output, as it confers the ability to spend it.

4. For any transaction, the sum of the values consumed (from
other transaction’s outputs) by all its inputs plus txForge
must be equal the sum of all values produced by all of the

transaction’s outputs (i.e., sum of all txOutValue fields)
plus the transaction fee txFee. This essentially means that
we neither lose nor spuriously create value.

For more details and a precise mathematical specification of
the standard UTxO ledger rules, see [Zahnentferner 2018].

3.3 Transactions with scripts
Pubkey payment outputs are sufficient for a simple payment
system. If we want to go beyond that, we need a more sophis-
ticated decision procedure to decide whether a given input
is allowed to spend the output it refers to — i.e., we need
to make Condition (3) of the enumeration in the previous
subsection more general. The general idea here is to replace
the combination of public key (the lock) and transaction
signature (the key) with a general computation. Instead of
the public key we have a validator script validator, and
instead of the transaction signature we have a redeemer
script redeemer :: Redeemer, with the assumption that
validator :: Redeemer -> Bool. To validate a connec-
tion, we simply evaluate validator redeemer and require
that it yields True.

This is exactly the situation with Bitcoin, where both the
validator and the redeemer script are implemented in BitCoin
Script (a simple stack-based language, whose most complex
control structure is a conditional); the redeemer script is
essentially all that an output’s validator knows about the
transaction (and the input) that is attempting to spend it.

In the Extended UTxO model we extend the context infor-
mation considerably. The type of the validator is now
validator :: DataScript -> Redeemer -> PendingTx

-> Bool

The DataScript is part of the same output as the validator.
If we look at the definition of TxOutType again, we see that
the PayToScript variant supplies exactly that data script.
But where is the validator script itself? It is actually not

part of the transaction output. All that is included in the
output is the hash of the validator script; to be precise, the
hash of the validator script is the address, txOutAddress, of a
pay-to-script output. As the collision-resistant cryptographic
hash of a script (for all practical purposes) uniquely identifies
that script, it is sufficient to fully determine the required
validation computation.3

Now, if we look at the definition of TxInType again, we see
that its ConsumeScriptAddress variant provides the miss-
ing validator script together with the input’s redeemer. It is
important to realise that the person who submits the spend-
ing transaction cannot cheat at this point. If they provide
the wrong validator script, its hash won’t match the output
address and the transaction will be deemed invalid.

3The actual validator script is not required until validation time, so in order
to reduce on-chain storage requirements it may be stored off-chain until it
is needed, or an already-existing validator may be re-used.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Functional Blockchain Contracts DRAFT, 2019, Submitted

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

The third argument, PendingTx, to the extended validator
signature contains the entire transaction that is currently
being validated. We know this setup already: the validator
definition in the where clause of contributionValidator
in Section 2, after partial application to the Campaign para-
meters, has the same structure (with contract-specific types
for DataScript and Redeemer).
This extension of the context available to the validator

greatly boosts the expressiveness of the contract system, to
a level where we conjecture that it is comparable to that of
Ethereum. We already go beyond Bitcoin Script with simple
examples like our crowdfunding code, and leave it far be-
hind with complex examples such as the Marlowe financial
contracts described in Section 6.

4 Staged programming
Just like web applications, decentralised applications (dapps)
built on blockchains comprise two separate components
which are deployed in separate execution environments:

1. on-chain code stored on the blockchain and executed during
the inclusion of new transactions into new blocks that are
being added to the chain (similar to the server component
of a web application), and

2. off-chain code typically deployed through a website and
executed on the client machine of a blockchain user with
access to the user’s cryptographic wallet, much like the
client portion of a web application running in a user’s web
browser; in fact, dapp off-chain code does often execute in
a web browser as well.

Why is this decomposition necessary? The on-chain code
contains the dapp’s contractual components. It needs to en-
force that only transactions that meet the contractual obli-
gations are successfully validated and added to the chain.
In other words, the integrity of a smart contract depends
on the integrity of the on-chain code: thus we need to store
it on the cryptographically immutable blockchain to pre-
vent tampering. Moreover, slot leaders (the servers adding
new blocks to the chain in the proof-of-stake Ouroboros
protocol, corresponding to the miners of a proof-of-work
protocol as employed in Bitcoin) need to execute on-chain
code—specifically, the validation scripts from Section 3—to
guarantee that only transactions that abide by all relevant
contractual obligations are accepted into the chain.

Conversely, the off-chain code, which submits new trans-
action to slot leaders for validation and inclusion into the
chain, necessarily needs to run in close association with a
contract user’s cryptocurrency wallet. After all, each transac-
tion needs to be paid for by inclusion of a small transaction
fee, and a cryptographic wallet is the only place where the
necessary cryptographic credentials are held (anything else
would compromise the security of the funds).

Existing blockchains and their smart contract and dapp
frameworks use separate languages for the on-chain and off-
chain code (in Ethereum, Solidity and JavaScript), and they
tend to invent new languages for the on-chain component
(e.g., Solidity). This comes with the same disadvantages as
using different languages for the client and server compo-
nent of web apps, which has led to the proposal of tierless
web programming [Cooper et al. 2007]. However, when new
languages are invented the situation is even worse because
of the enormous overhead involved in creating a new lan-
guage, compilers and other tools, libraries, teaching material,
and generally growing a new language community.
We overcome these problems by using Haskell for both

on-chain and off-chain code. This enables us to build on the
existing, vibrant Haskell ecosystem and to seamlessly share
datatypes and code between the two. As an added bonus, the
Haskell typechecker helps us to avoid mistakes where the
two connect.
The purely functional nature of Haskell helps us to keep

the on-chain and off-chain code separate, but we still need a
language mechanism to distinguish between on-chain and
off-chain code. Given that off-chain code conceptually em-
beds on-chain code, as the former submits the latter in the
form of scripts accompanying transactions, one optionwould
be to use an embedded language, similarly to how the Accel-
erate library [Chakravarty et al. 2011] embeds array code
to custom-compile to off-load to accelerators, such as GPUs.
Unfortunately, embedded languages tend to lead to complex
types (again, Accelerate is a good example) and one of our
design goals was to make Plutus easy to use for develop-
ers who are new to Haskell. Secondly, embedded languages
favour runtime compilation of the embedded language (as,
once more, becomes obvious when looking at Accelerate).

In summary, we require a two-level language, but we want
the embedded language to be compiled at host language
compile time. This is exactly what compile-time metaprog-
ramming, as realised by Template Haskell [Sheard and Jones
2002], provides.

4.1 Template Haskell for embedded code
While Template Haskell fits our requirement of compile-time
metaprogramming, it doesn’t directly support our need to
generate code in our own intermediate language, Plutus Core,
for storage and execution on the blockchain. Let’s extract the
on-chain validator code from the contributionValidator
function of the crowdfunding contract and have a look at it:

val = [||
λCampaign{..} (contributor :: PubKey)

(action :: CampaignAction) (tx :: PendingTx) ->
let
PendingTx inputs _ _ _ slots _ _ = tx
in
case action of

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Refund -> . . .
Collect -> . . .

||])

The type of val is
Q (TExp (Campaign -> PubKey

-> CampaignAction -> PendingTx -> Bool))

If we were to splice the quoted Haskell code bound to val,
it would be compiled through GHC’s standard pipeline and
would end up being inlined into the embedding off-chain
code. Alternatively, we could use Template Haskell’s abstract
syntax for Haskell (defined by TExp) and write a custom
compiler to Plutus Core. However, the latter seems wasteful.
Plutus Core is lower-level than, but strongly related to GHC’s
Core intermediate language [Sulzmann et al. 2007] (both are
variants of System F). GHC itself already includes all the
machinery to typecheck and desugar Haskell to GHC Core.
It seems inadvisable to duplicate that functionality.
In principle, we could use the GHC API (i.e., GHC as a

library from within Template Haskell). However, this is awk-
ward for two pragmatic reasons: (1) the abstract Haskell
syntax provided by Template Haskell is frustratingly differ-
ent from that used inside GHC, and (2) Template Haskell
doesn’t distinguish between package dependencies of the
meta program and the object program. In other words, if
we use the GHC API during compiling a Plutus program in
Template Haskell, we also need to ship GHC as a library with
the Plutus off-chain code to every user wallet (even though
it is never used at runtime). This also seems very wasteful.
Luckily, there is an alternative: GHC plugins [ghc 2019,

section 13.3].

4.2 Plugins for custom compilation
GHC core-to-core plugins enable us to inject our own cus-
tom Plutus Core compiler code into the GHC pipeline. Our
custom compiler,
1. locates GHC Core fragments representing to on-chain code,
2. compiles them to Plutus Core, and
3. replaces eachGHCCoreAST subtree representing on-chain

code with a serialised version of the generated Plutus Core.
Overall, we end up with compiled off-chain code that embeds
blobs of on-chain code in its serialised Plutus Core represen-
tation, ready to be submitted to the blockchain attached to
transactions generated by the off-chain code.
There just seem to be two problems: (1) how does the

plugin identify on-chain code and (2) how do we ensure that
the type of the serialised on-chain code lines up with the
source code? (GHC Core is a typed intermediate language;
hence, any code transformation needs to be type-preserving.)
We achieve this using a trick that to the best of our knowledge
was first used in the inline-java package embedding Java
into Haskell. This packages uses GHC plugins to extract type
information at a Template Haskell splice point [Domínguez
and Boespflug 2017]. The idea is to wrap the quoted AST

(e.g., validator above) into a splice of a Template Haskell
function that inserts a marker around that AST fragment;
specifically, we use $$(L.compileScript val), where
compileScript :: Q (TExp a)

-> Q (TExp (CompiledCode a))

Now, compileScript—despite its name—does not actually
compile the AST of the quoted program fragment. Instead, it
inserts a marker, plc, that is picked up by our custom Plutus
Core compiler injected with the plugin. Specifically, we have
compileScript e = [|| plc $(e) ||]

with plc :: a -> CompiledCode a.4 Now, CompiledCode
is the type of our serialised Plutus Core representation, so
the types line up, too. Voilà!

4.3 Compiling GHC Core to Plutus Core
Both GHC Core and Plutus Core are extensions of System
F , the polymorphic lambda calculus. GHC Core is much the
more generous extension. It adds mutually-recursive binding
groups, algebraic data types, case expressions, coercions, and
more. In contrast, Plutus Core, for reasons that we explain
in Section 5, stays much closer to the mathematical calculus.
Now, folklore has it that all the fancy constructs of GHC

Core can be desugared into the pure calculus as long as it
includes a simple facility for recursion, such as a fixed-point
combinator. In practice, it appears as if, so far, nobody has
worked out all the details required to handle full Haskell
algebraic data types. As this is an interesting topic in itself,
we cover it in a companion paper [Kireev et al. 2019].

4.3.1 Lifting values at runtime
There is one last thing! We are going to great lengths to
compile on-chain validator scripts at off-chain code compile
time. However, the data scripts and often also the redeemer
scripts are values (not programs) determined at compile time.
For example, in contribute (Section 2), we use ownPubKey
to obtain a public key ownPK from the wallet at off-chain
code runtime, in order to include it into the data script of the
transaction to be submitted. Data scripts are also included
in the form of Plutus Core; hence we need to compile the
value of ownPK. This is quite simple as public keys are sim-
ple byte strings. However, in other situations we need to
translate more complex Haskell data structures to Plutus
Core. Including the entire Plutus compiler toolchain into
every off-chain program is not practical, so we need a more
lightweight solution.
We take inspiration from how Template Haskell injects

runtime values into quoted code. It has a Lift type class
with a lift method that constructs the Template Haskell
AST representing the argument passed to lift. We similarly
reuse part of the Plutus Core compiler along with typeclasses
to generate instances of the following classes (Term and
4In reality, the definition is slightly more involved to help us generate good
error messages in the plugin compiler.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Functional Blockchain Contracts DRAFT, 2019, Submitted

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Type are the datatypes for Plutus Core terms and types; class
constraints on the methods are omitted for simplicity):

class Lift a where
lift :: (...) => a -> m (Term TyName Name ())

class Typeable a where
typeRep :: (...) => Proxy a -> m (Type TyName ())

5 Plutus Core
A key function of Plutus is to generate on-chain validator
scripts whose execution during transaction validation ensure
contract integrity and security properties. Our compiled rep-
resentation for on-chain scripts is Plutus Core. Once submit-
ted as part of a blockchain transaction, scripts are immutable.
One must have absolute certainty as to what the code will
do, so a complete specification of Plutus Core is essential.
The stakes for a smart contract can be high; billions of

dollars are currently invested in smart contracts on Ether-
eum [Wood 2014]. Changing deployed contract scripts is
only possible if a majority of block producing nodes agree
to an undesirable update called a hard fork. As a result, it is
important to design a language without hidden flaws, and
that can remain stable for a long time.

5.1 A minimal core language
What language should serve as Plutus Core?We need a small,
purely functional intermediate language to simplify the pro-
cess of precisely specifying its semantics and mechanising
its meta-theory. We are not the first to decide that System F
[Girard 1972] is a good basis for a typed intermediate lan-
guage (a choice, for example, also made by GHC). However,
we deviate from the standard choices in two important ways:
(1) we are basing our design on System Fω and (b) we don’t
have explicit datatypes and case expressions in Plutus Core.

System Fω directly supports parameterised types such as
List A, where List has the higher order kind, Type → Type.
Explicit datatypes and case expressions are usually included
in intermediate languages as they facilitate code optimisa-
tions and efficient machine code generation. However, they
are typically the language construct with the most com-
plex semantics. Plutus Core is never compiled to machine
code. It gets interpreted in a sandbox during validation of
transactions. Moreover, a large part of the computational
costs of transaction validation is in the crypotographic oper-
ations; in comparison, the computational overhead of desug-
aring datatypes seems minor. The alternative to including
explicit datatypes and case expressions is simulate them
using Church encoding or Scott encoding.

As a result, the formal specification of our language can be
described in one line: it is exactly System Fω with recursive
types and appropriate primitive types and operations.

5.2 Isorecursive vs. equirecursive vs. ifix
The one-line description above turns out not to be as un-
ambiguous as one might hope. We have to choose between
equirecursive types and isorecursive types [Pierce 2002, chap-
ter 21]. In the equirecursive approach one views a recursive
type as an abbreviation for an infinite tree, and considers
µα .A[α] and A[µα .A[α]] to be the same type. In the isore-
cursive approach, one considers µα .A[α] to be a type in its
own right, and introduces two term forms, fold to convert
A[µα .A[α]] to µα .A[α], and unfold to convert the other way.

Above, we’ve assumed that α has kind Type, but at higher
kinds things become more complicated. Strictly speaking we
should write µα : K .A[α], where α has kind K , and kinds
are given by the grammar: J ,K ::= Type | J → K . While
equirecursive types in System F are known to be decidable,
it is not known whether or not equirecursion is decidable
at higher kinds [Cai et al. 2016]. Accordingly, we picked the
more conservative design: isorecursive types.

Here, also, at higher kinds there is a twist. Termsmust have
a type, so one cannot have terms that directly correspond
to fold and unfold at higher kind. The trick is to realise that
every kind K must have the form K1 → · · · → Kn → Type.
Hence, a term involving recursion at higher-kind must

have the type M : (µα : K .A[α]) A1 · · · An where A1 :
K1, . . . ,An : Kn . Unfolding then yields the term

unfoldA1, ...,An M : A[µα : K .A[α]] A1 · · · An

Similarly for fold. No way is known to infer A1, . . . ,An , so
they must be explicitly present in the fold and unfold terms.
This is called the spine formulation, and is found in the PhD
thesis of a recent Milner award winner [Dreyer 2005].

A different formulation turns out to have equivalent power
while being slightly less messy. We replace µα : K .A[α] by

ifixK : ((K → Type) → (K → Type)) → (K → Type)

Given a term of type M : (ifixK A) B, where A : K → K
and B : K , we then have unfoldA,B M : A (ifixK A) B, which
avoids the need to list a whole spine of constructs. We settled
on this construct, after [Brown and Palsberg 2017], who use
the same syntax for isorecursive fixed points, but do not
support fixed points at arbitrary kinds.
When we first hit on modelling Plutus Core after Sys-

tem Fω we were pleased at being able to base our design
on such a canonical approach. It was a disappointment to
discover the complications above. While we can still rely on
standard solutions, they are not quite so widely known in
the theory community as we might have hoped.

5.3 Recursion on values
On the other hand, there was one pleasant surprise along
the way. Our original design included both fixpoints at the
type level, as above, and a fixpoint at the value level to define
recursive functions. We were pleased to discover that the
latter was redundant. It is well known that one can define

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

recursion over values in the untyped lambda calculus, and
it is well known that one can model the untyped lambda
calculus with the recursive type µα . α → α .

Hence, it should be straightforward to define recursion at
the value level in terms of recursion at the type level, which
is confirmed by [Harper 2012, chapter 20.3]. Accordingly, we
deleted recursion on values from our core calculus.

5.4 Mutual recursion
The construct µα .A[α] only supports a singly-recursive type.
Is that sufficient, or do we need to add a construct to support
mutually-recursive types?

One possibility is to apply Bekić’s Theorem [see Winskel
1993]. Consider mutually recursive types defined by the
following two equations. α = A[α , β]; β = B[α , β]. These
can be solved by setting: α = µα .A[α , µβ . B[α , β]]; β =
µβ . B[µα .A[α , β], β]. The size of such terms grows rapidly.
Ten mutually recursive types, where each type depends upon
the other nine, can be written as equations in 180 symbols.
Expansion with Bekić’s theorem is explosive: it requires 190
million symbols. Fortunately, it is extraordinarily rare to find
such a type.
But then we discovered a better approach than Bekić’s

Theorem, which exploited higher-order kinds to encode mu-
tually recursive families of types with only a constant factor
increase compared to a set of mutually recursive equations.
That approach is described in [Kireev et al. 2019].

5.5 Formal model in Agda
One pleasant development is that the cryptocurrency com-
munity respects the value of formal methods. The proposal
for a new scripting language for Bitcoin, called Simplicity,
was accompanied by a complete formal description in Coq
[O’Connor 2017], and the smart contract languageMichelson
has also been formalised in Coq [mic 2018]. Accordingly, we
developed the meta theory of Plutus Core in Agda: the devel-
opment is described in the companion paper [Anonymous
2019].

6 Marlowe
Marlowe [Lamela Seijas and Thompson 2018] is a domain-
specific language targeted at the execution of financial con-
tracts in the style of [Peyton Jones et al. 2000] on a block-
chain.
To support execution on blockchain, Marlowe adds no-

tions of commitments and timeouts to the model of [Pey-
ton Jones et al. 2000]. A commitment calls for a participant
to commit currency to a contract, e.g. to ensure that a pay-
ment will not fail. Timeouts are used to ensure that contracts
make timely progress during execution. For example,
Pay i alice bob val t k

describes a contract that enables a payment of val from
alice to bob (identified by i and timing out at time t). Once

the payment is successfully claimed by bob, or if the timeout
happens before bob makes a claim, the contract continues
as k, itself a Marlowe contract.

The behaviour of Marlowe contracts is encapsulated in a
small-step semantics. At each step this takes any available
inputs: commitments, values of oracles, payment claims; the
contract state, that keeps track of commitments; and the
contract itself. It will return any actions generated, together
with the updated state and remaining contract.

We implement Marlowe contracts with Plutus and its Ex-
tended UTxO model by effectively encoding the transition
step function of the Marlowe small-step semantics as Plu-
tus on-chain code. As described in the previous sections,
this is compiled into a Plutus Core validator script that en-
sures that funds locked by the contract can only be spent
in accordance with the Marlowe semantics: we call this the
Marlowe validator. The off-chain component of a Marlowe
contract chains multiple transactions together, effectively
implementing the transitive closure over the transition step
function. The remaining contract and its state are encoded
in the data scripts accompanying the Marlowe validator. Fi-
nally, actions and inputs (i.e., choices and oracle values) of a
Marlowe contract are passed as redeemer scripts. Overall,
each step in Marlowe contract execution encoded in Plutus is
a transaction which spends an output locked by the Marlowe
validator by providing a valid input in a redeemer script, and
produces a transaction output with a Marlowe contract as a
continuation (the remaining contract).

6.1 Design space
The implementation outlined above effectively implements a
Marlowe interpreter (in the form of its small-step semantics)
in Plutus. An alternative would have been to implement a
Marlowe to Plutus compiler that, given a Marlowe contract,
generates contract-specific Plutus code, effectively specialis-
ing the Marlowe validator to the next language construct in
the remaining Marlowe contract (contained in the accompa-
nying data script). The interpreter approach has a number
of advantages:

• It is simple: we implement a single Plutus script that can
be used for all Marlowe contracts, thus making it easier to
implement, review, and test what we have done.

• It is close to the semantics of Marlowe described in [Lamela
Seijas and Thompson 2018], making it easier to audit.

• It means that the same implementation can be used for
both on- and off-chain (wallet) execution of Marlowe code.

• It allows client-side contract evaluation, where we reuse
the same code to do contract execution emulation (e.g., in
an IDE or in a web-based development environment for
Marlowe).

• Having a single interpreter for all (or a particular group of)
Marlowe contracts allows one to monitor the blockchain
for these kinds of contract, if desired.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Functional Blockchain Contracts DRAFT, 2019, Submitted

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Finally, as we retain the remaining contract in data scripts ac-
companying the Marlowe validator, we make it accessible to
everyone, simplifying contract reflection and introspection.

6.2 Contract lifecycle on extended UTxO model
Given our implementation of Marlowe by way of the Mar-
lowe validator implementing the Marlowe operational se-
mantics, we can divide the execution of a Marlowe contract
into three phases: creation, execution, and completion.

6.2.1 Creation
Marlowe contract creation is realised as a creation transaction
with at least one script output locked by the Marlowe valida-
tor and with a given Marlowe contract in the data script; this
output must contain a non-zero amount of money, a contract
deposit, which can be spent during the completion phase.
Note that we do not place any restriction on the transac-
tion inputs, which could use any other transaction outputs,
including ones locked by scripts. As part of the creation trans-
action, we can initialise a contract with a particular state
containing a number of commitments, as shown in Figure 2.

PubKey: Alice
value: 1000

Marlowe validator
contract: Pay Alice to Bob 100
state: [Committed Alice 100]

value: 100

PubKey: Alice
value: 900

Figure 2. Marlowe contract initialisation by committing
money

6.2.2 Execution
AMarlowe contract executes by way of the stepwise submis-
sion of execution transactions by the parties involved. These
transactions form a chain where the remaining contract and
the current contract state are captured in the data script of
the continuation output of the associated execution trans-
action; the continuation output is always the one that is
also locked by the Marlowe validator. Moreover, contract
actions and inputs, the choices and oracle values, are repre-
sented as redeemer scripts on inputs spending fromMarlowe
validators.

We illustrate this chain in Figure 3. The black outputs
in the chain are all locked by the Marlowe validator. They
are spent by connecting redeemer scripts (red lines) that
represent the actions and inputs. The Marlowe validator,
encoding the Marlowe operational semantics, first validates
the current contract and state, given in its accompanying
data script. That is, it checks that the contract correctly uses
identifiers, and holds at least what it should, namely the
deposit and the outstanding commitments.
The validator then evaluates the continuation contract

and its state, using the eval function, i.e., the transition step

Contract Committed

Spend deposit

Deposit

Change

Alice's commit

Paid to Bob

Paid

Create Commit Payment

Deposit

Figure 3. Simple Marlowe contract phases

function defined in [Lamela Seijas and Thompson 2018] with
the following signature:

eval :: Input
-> Slot -> Ada -> Ada -> State -> Contract
-> (State, Contract, Bool)

Here, Input is a combination of contract participant actions
(Commit, Payment, Redeem), oracle values, and choices made
by the participants. The two Ada parameters are the current
contract value and the result contract value. So, for example,
if the contract is to perform a 20 Ada Payment and the input
current amount is 100 Ada, then the result value will be
80 Ada. The Contract and State values are the current
contract and its State, taken from the data script.
On the basis of these arguments, the eval function, tak-

ing into account the transaction’s slot range, checks that
all inputs are within defined bounds and that payments are
within committed bounds. In case of a valid input, it returns
the new State and Contract and the Boolean True; other-
wise, it returns the current State and Contract, unchanged,
together with the Boolean False.

It is important to keep in mind that on-chain code cannot
generate transaction outputs, but can only validate what-
ever values the off-chain code provides in a transaction. The
values for every step during contract evaluation are created
by off-chain code (or manually by a user) and submitted
to the blockchain for validation as part of a transaction. In
contrast to committed on-chain code, off-chain code can be
arbitrarily manipulated by a user, and so cannot be trusted
by other participants in the contract. Consequently, the on-
chain validator must carefully check all values provided to it,
including any Contract and State values. The only piece
of information that the Marlowe validator can trust is the
data script located in the same transaction output as itself
(after all, that data script was provided by the same entity as
the validator).

Take the following contract:

Commit id Alice 100 (Both (Pay Alice to Bob 30 Ada)
(Pay Alice to Charlie 70 Ada))

After Alice has made her commitment, the contract becomes

Both (Pay Alice to Bob 30 Ada)
(Pay Alice to Charlie 70 Ada)

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

DRAFT, 2019, Submitted
Manuel M. T. Chakravarty, Roman Kireev, Kenneth MacKenzie, Vanessa McHale, Jann Müller, Alexander Nemish, Chad

Nester, Michael Peyton Jones, Simon Thompson, Rebecca Valentine, and Philip Wadler

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Commit

Paid to Bob

Both (Pay Alice to Bob 30 Ada)
 (Pay Alice to Charlie 70 Ada)

Paid to Bob again

Pay Alice to Bob 70 Ada Null
Commit id Alice 100

(Both (Pay Alice to Bob 30 Ada)
 (Pay Alice to Charlie 70 Ada))

Figure 4.Malicious Marlowe contract execution

Bob can now issue a transaction with a Payment input in
the redeemer script and a script output with 30 Ada less,
protected by the Marlowe validator script, together with a
data script containing the evaluated continuation contract
Pay Alice to Charlie 70 Ada

Charlie can then issue a similar transaction to receive the
remaining 70 Ada.

6.2.3 Ensuring execution validity
Looking again at this example, suppose that Bob chooses,
maliciously, to issue a transaction with the continuation
Pay Alice to Bob 70 Ada to try to take all the money,
as in Figure 4, much to the disappointment of Charlie. To
avoid this, we must ensure that the continuation contract
resulting from eval is equal to the one in the data script of
its continuation transaction output.
Performing this equality check is tricky, though. From

Section 3, we know that the transaction information passed
to the validator only contains the cryptographic hashes of the
data scripts of each transaction output. We might hope to be
able to compute the hash of the continuation contract and the
new contract state in the on-chain validator itself. However,
this is very fragile since many denotationally equal Plutus
Core expressions have different serialised forms, and hence
different hashes. (In other words, α-, β-, and η-conversion
all preserve denotational equality, but they change the hash
of the serialised terms.)

To work around this we require the input redeemer script
and the output data script to be identical; more precisely,
we require that they have the same hash, which we can
easily check as both hashes are included in the transaction.
At validation time, a validator gets the spending input’s
redeemer passed as an argument (the actual term, not just
the hash), and hence we can use it to check for equality with
the result of running eval.

The spending redeemer and the data script of the continua-
tion output both have the same type: (Input, MarloweData)
where (1) the Input contains contract actions (i.e., Payment,
Redeem), Choices, and Oracle Values; (2) MarloweData
contains the remaining Contract and its State; and (3) the
State here is a set of Commits plus a set of Choices made.
To spend a transaction output locked by the Marlowe

validator script, the off-chain code must provide a redeemer
script which is a pair of an Input and the expected output
of interpreting a Marlowe contract for that given Input; i.e.,

a Contract/State pair. The expected contract and state can
be precisely evaluated beforehand off-chain using the same
eval function as is contained the Marlowe validator.

To ensure that the off-chain code provides valid remaining
Contract and State values, the Marlowe validator script
will compare the evaluated contract and resulting state with
those provided within the redeemer value, and will reject all
transactions where those do not match.

To ensure that the remaining contract’s data script has the
same Contract and State values as those that the validator
got in the redeemer script, we check that the data script hash
is the same as that of the redeemer script.

6.2.4 Completion
When a contract evaluates to Null and all expired Commits
are redeemed, the initial contract deposit can be spent, clos-
ing the contract.

7 Related Work
Smart contract systems. There is a large number of pro-
posals for blockchain smart contract systems. Most are only
described in informal “white papers” and have not been im-
plemented. It is beyond the scope of this paper to review
them all, so we focus on the most pertinent.
The two most widely used low-level smart contract lan-

guages are Bitcoin Script [Bit 2018] and the Ethereum Virtual
Machine (EVM) bytecode [Wood 2014]. These are both com-
paratively ad hoc languages with semantics given by a stack
machine. Bitcoin Script is very limited in expressiveness
and restricted to constant-time programs with very limited
control structures (essentially only branches). There is also
no “official” high-level language compiling to Bitcoin Script,
although several proposals have been put forward by a vari-
ety of groups. At the other extremity, the EVM supports a
fully-fledged instruction set and admits Turing complete pro-
grams (whose execution is dynamically limited by a contract
user’s need to pay a cost proportional to the used resources);
moreover, there is a de facto standard high-level language:
the statically typed, object-oriented Solidity [Sol 2019].

Closer to our Plutus Core is the language Simplicity [O’Con-
nor 2017], which is a combinator language together with an
abstract machine giving its operational semantics. Like Plu-
tus Core, Simplicity has been formalised in a proof assistant,
and is designed to facilitate reasoning about the resource us-
age of programs. Unlike Plutus Core, Simplicity is not Turing
complete. Further, while it is straightforward to adapt sophis-
ticated functional programming techniques for use in Plutus
Core due to its basis in System Fω , the same techniques are
not so readily usable with Simplicity.
The Tezos system introduces Michelson as a bytecode-

based, low-level compiler target, which might be charac-
terised as a statically typed crossover between Forth and

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Functional Blockchain Contracts DRAFT, 2019, Submitted

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Lisp. Michelson has been formalised in Coq [mic 2018]. Sev-
eral higher-level languages have been proposed, but none
appear to be available at the time of writing.
All of the above languages cover only the on-chain com-

ponent of distributed apps. The integrated treatment of on-
chain and off-chain components in Plutus is, to the best of
our knowledge, a unique feature among general-purpose con-
tract languages. Moreover, instead of inventing yet another
language, we stick to System Fω and Haskell and inherit the
rich amount of existing work around these.

Implementations of System F
µ
ω . Two recent implementa-

tions of System Fω with recursive types are System F
µi
ω

[Brown and Palsberg 2017] and System F
µ∗
ω [Cai et al. 2016].

F
µi
ω is more similar to Plutus Core, as it also uses isorecursive
types. The primary difference is that the fixed point oper-
ator in Plutus Core is available at arbitrary kinds, while in
F
µi
ω the fixed point operator is restricted to kind (∗ → ∗).

Additionally, F µiω extends Fω with a type operator Typecase
that allows syntactic inspection of types. In contrast, F µ∗ω
uses equirecursive types, and the fixed point operator is
restricted to kind ∗. Additionally, F µ∗ω supports algebraic
datatypes through record and variant syntax.

References
2013–2018. Bitcoin Script reference guide. https://en.bitcoin.it/wiki/Script.
2016–2019. Solidity documentation. https://solidity.readthedocs.io/.
2018. Michelson in Coq. GitRepo. https://framagit.org/rafoo/michelson-

coq
2019. GHC User’s Guide. https://downloads.haskell.org/∼ghc/8.6.3/docs/

html/users_guide/index.html. Accessed: 2019-02-20.
Anonymous. 2019. System F in Agda, for fun and profit. Under submission.
Massimo Bartoletti and Roberto Zunino. 2018. BitML: A Calculus for Bitcoin

Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). ACM, 83–100.

Matt Brown and Jens Palsberg. 2017. Typed Self-Evaluation via Intensional
Type Functions. In Proceedings of the 44th Annual ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL ’17). 415–428.

Yufei Cai, Paolo G. Giarusso, and Klaus Ostermann. 2016. System F-omega
with Equirecursive Types for Datatype-Generic Programming. In ACM
SIGPLAN Symposium on Principles of Programming Languages.

Manuel M T Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell,
and Vinod Grover. 2011. Accelerating Haskell array codes with multicore
GPUs. In DAMP ’11: The 6th workshop on Declarative Aspects of Multicore
Programming. ACM.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links:
Web Programming Without Tiers. In Proceedings of the 5th International
Conference on Formal Methods for Components and Objects (FMCO’06).
Springer-Verlag, Berlin, Heidelberg, 266–296.

Facundo Domínguez and Mathieu Boespflug. 2017. GHC compiler plugins
in the wild: typing Java.

Derek Dreyer. 2005. Understanding and Evolving the ML Module System.
PhD Thesis. Carnegie Mellon University, School of Computer Science.

Samuel Falkon. 2017. The Story of the DAO – Its History and Conse-
quences. https://medium.com/swlh/the-story-of-the-dao-its-history-
and-consequences-71e6a8a551ee. medium.com.

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’État. Université
Paris 7.

Robert Harper. 2012. Practical Foundations for Programming Languages.
Cambridge University Press, New York, NY, USA.

Alex Hern. 2018. Bitcoin’s energy usage is huge – we can’t afford to ig-
nore it. https://www.theguardian.com/technology/2018/jan/17/bitcoin-
electricity-usage-huge-climate-cryptocurrency. The Guardian.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol.
In Advances in Cryptology - CRYPTO 2017. 357–388.

Roman Kireev, Chad Nester, Michael Peyton Jones, PhilipWadler, Vasilis Gk-
oumas, and Kenneth MacKenzie. 2019. Unraveling recursion: compiling
an IR with recursion to System F. Under submission.

Pablo Lamela Seijas and Simon Thompson. 2018. Marlowe: Financial Con-
tracts on Blockchain. In Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Industrial Practice. ISoLA 2018. (LNCS), Vol. 11247.

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. 2016. Bitcoin and Cryptocurrency Technologies: A
Comprehensive Introduction. Princeton University Press.

Russel O’Connor. 2017. Simplicity: A New Language for Blockchains. In
Proceedings of the 2017Workshop on Programming Languages and Analysis
for Security.

Simon Peyton Jones et al. 2000. Composing Contracts: An Adventure in
Financial Engineering (Functional Pearl). In ICFP. ACM.

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.
Plutus Team. 2019a. The Plutus language implementation and tools. https:

//github.com/input-output-hk/plutus.
Plutus Team. 2019b. Plutus Playground. https://testnet.iohkdev.io/plutus/.
Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming

for Haskell. In 2002 ACM SIGPLAN Workshop on Haskell. ACM, 1–16.
Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and

Kevin Donnelly. 2007. System F with Type Equality Coercions. In ACM
SIGPLAN Int. Workshop on Types in Languages Design and Impl.

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An
Introduction. MIT Press.

Gavin Wood. 2014. Ethereum: A Secure Decentralized Generalised Transac-
tion Ledger. (2014). https://gavwood.com/paper.pdf

Joachim Zahnentferner. 2018. Chimeric Ledgers: Translating and Unifying
UTxO-based and Account-based Cryptocurrencies. IACR Cryptology
ePrint Archive 2018 (2018), 262. http://eprint.iacr.org/2018/262

13

https://en.bitcoin.it/wiki/Script
https://solidity.readthedocs.io/
https://framagit.org/rafoo/michelson-coq
https://framagit.org/rafoo/michelson-coq
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency
https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus
https://testnet.iohkdev.io/plutus/
https://gavwood.com/paper.pdf
http://eprint.iacr.org/2018/262

	Abstract
	1 Introduction
	2 The Plutus Programming Model
	2.1 Plutus architecture
	2.2 An example contract: crowdfunding

	3 The Extended UTXO Ledger Model
	3.1 Transactions
	3.2 Validation
	3.3 Transactions with scripts

	4 Staged programming
	4.1 Template Haskell for embedded code
	4.2 Plugins for custom compilation
	4.3 Compiling GHC Core to Plutus Core

	5 Plutus Core
	5.1 A minimal core language
	5.2 Isorecursive vs. equirecursive vs. ifix
	5.3 Recursion on values
	5.4 Mutual recursion
	5.5 Formal model in Agda

	6 Marlowe
	6.1 Design space
	6.2 Contract lifecycle on extended UTxO model

	7 Related Work
	References

