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Abstract—Blockchain based systems, in particular cryptocurren-
cies, face a serious limitation: scalability. This holds, especially, in
terms of number of transactions per second. Several alternatives
are currently being pursued by both the research and practitioner
communities. One venue for exploration is on protocols that
do not constantly add transactions on the blockchain and
therefore do not consume the blockchain’s resources. This is
done using off-chain transactions, i.e., protocols that minimize the
interaction with the blockchain, also commonly known as Layer-2
approaches. This work relates several existing off-chain channel
methods, also known as payment and state channels, channel
network constructions methods, and other components as channel
and network management protocols, e.g., routing nodes. All these
components are crucial to keep the usability of the channel, and
are often overlooked. For the best of our knowledge, this work
is the first to propose a taxonomy for all the components of the
Layer-2. We provide an extensive coverage on the state-of-art
protocols available. We also outline their respective approaches,
and discuss their advantages and disadvantages.

Index Terms—Blockchain, Off-chain, Channels, Scalability.

I. INTRODUCTION

Blockchain is the main data-structure behind the successful
rebirth of digital cash from its first attempts [1, 2], firstly
by Bitcoin [3] and now with several decentralized cryptocur-
rencies [4-8]. Although Bitcoin’s relative success in offering
worldwide payment alternatives to the more traditional mech-
anisms, like, for example, VISA Network [9] and Paypal [10],
is undeniable, it still has a long way ahead in terms of handling
a larger number of transactions.

The technical challenge of increasing the number of trans-
actions per second (TPS) of a blockchain system is urgent,
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and it is closely related to the inner workings of the system
itself. Namely, to its consensus protocol. As a more concrete
example, we refer to the Bitcoin network whose consensus
protocol depends on the joint hash power of its nodes to
perform the block leader election procedure, that is, the
selection of the new block issuer, which is calibrated by
design to happen every 10 minutes on average. In Proof-of-
Stake (PoS) based systems, like Cardano/Ouroboros [7, 11]
and EOS [4], analogous election exists also within a carefully
designed (and strongly dependent on security guarantees) time
slot for the generation of the new block. Let alone that, in order
to confirm a transaction, it is required a minimum number of
blocks added to be added in the main chain, which gives the
confirmation time. The confirmation time, despite its central
role in the security and stability of the system, imposes severe
restrictions to the TPS rate of the overall platform, and there-
fore alternatives, arguably most of them centered or closely
related to the consensus protocol, had been suggested, such
as, for example, alternative structures for blockchain [12-16],
change in the size of the block [17], signature aggregation [18],
different consensus protocol [6, 19-22]. It is common to divide
the approaches to increase the TPS rate in three cases:

« Layer-0 (the network infra-structure): Here, optimization
and special servers are employed to decrease the latency
of the network, in order for example, to increase the TPS.
An example of such approach is given by BloXroute [23];

« Layer-1 (the consensus protocol): Arguably the layer
which have more approaches in literature. They are
different consensus architectures [4-7, 11, 20-22], where
a complete taxonomy can be found in [24], different
data-structure for blockchain [12, 13, 15, 16], valid chain



criteria [14], sharding [25-27], federation [28], and etc;
o Layer-2 (the off-chain channel/protocol): Briefly pro-
tocols that perform with minimal interaction with the
blockchain. Typically for opening, paying, closing and
disputing a channel. In the realm of cryptocurrencies,
concrete examples are given by Decker and Watten-
hofer [29] and Lighting Network (LN) [30], and others.
This layer encompasses much more protocols and algo-
rithms than the channel construction alone, as we review
in later sections. One of the contributions of this work is
to present a taxonomy, a coherent list of protocols, for
different levels in the stack of protocols in this layer.
Layer-2 channel constructions have few names in literature:
off-chain, payment or, yet, state channels, seemingly without
consensus among the research community about their mean-
ing. Here, in the face of the lack of standard terminology, we
settle to name payment channels, constructions that do not rely
on smart-contracts, and state channels otherwise. Furthermore,
we rely on the generic term off-chain channel when referring
to either one regardless of its inner workings.
In a nutshell, a payment channel between two players, is
when both participants decide to trade several transactions
during a period of time, and in the end they settle on a
final balance based on the transactions exchanged, then the
channel is closed. This transaction method is suitable for
very small amounts, i.e., micropayments, which has a long
history of research [31-38]. A fairly complete survey, which
includes centralized solutions, was done by Ali et al. [39].
More recently, micropayments were also studied by Pass and
shelat [40] in the setting of decentralized currencies, and for
specific applications [41, 42]. The main advantage of such a
setting is that for each transaction made during the period of
the channel, do not need to be published in the blockchain,
which is a clear advantage as concluded by McCorry et al.
[43]. That is a set of transactions can be settled independently
of the confirmation time, drastically improving the TPS rate.

A. More than Pairwise Channel

The channel constructions themselves are building blocks into
a stack of protocols (or algorithms). A simple payment/state
channel only paves the way for exchanging funds, which is
of limited use since the channel yields a capacity, i.e., the
sum of funds initially deposited by the two players. A more
interesting, and realistic, use is the concatenation of single
channels into a payment-channel network (PCN). In such a
setting, a node A can send payment to C' without creating a
specific channel from scratch with C, as long as both A and
C are connected to a third node B, which relays transactions,
typically by collecting fees.

A practical example of such a network is the already men-
tioned LN [30], which has multiple implementations [44—
47]. Although it extends the channel functionality, a lurking
problem persists: how to find suitable routes within the net-
work? The resemblance with theory of networks is inevitable,
naturally similar problems appear. For example, a node send-
ing a payment needs to find a route, similarly to routing

problems in networks. On the other hand, payment networks
also present differences, for example, the cost of the fees in a
particular route. Yet, assuming the mentioned routing problem
is solved, another one still exists: How about the stability of
the channel/network? Do all nodes need to be online during
all the time of the channel? Is the capacity of each pairwise
channel a bottleneck for the whole network?

All those questions are legit and relevant, and there are more as
we will see in later sections. Protocols and ideas to tackle them
are currently being considered and studied by the research and
practitioner community very often in an independent fashion
without a comprehensive framework or compilation. Given
that these ideas can be scattered through several journal and
conference papers, as well as Internet forums and repositories,
compiling them is a major task. Hence, maybe not so surpris-
ingly, at the best of our knowledge, it has not been done yet.
This work fulfills this gap.

B. Our Contribution

We provide an extensive coverage on all the Layers-2 solutions
for scalability in cryptocurrencies. Namely the off-chain chan-
nel, including probabilistic, simplex, and duplex, in addition
with payment network constructions and network management
protocols, i.e., the upper levels protocols, which, we highlight,
off-chain channels are building blocks.

A Taxonomy for the Layer-2 stack. As one of the immediate
results of our survey, we devise a taxonomy, with further
classification for the three cited levels: off-chain construc-
tion, payment-channel network, and network management.
The levels compose a stack of protocols for Layer-2, as
illustrated by Table I in Section II. As expected different
levels, and their respective set of functions, define specific
technical challenges, which by the best of our knowledge,
were never compiled in a comprehensive framework. A quick
look on Table I reveals intense research on areas and few
works in others, or even no works for specific problems. We
believe these observations are of strong interest by the research
community, which, otherwise, would have to collect these
works through numerous internet forums and repositories in
addition to scientific journals.

Comparison on the body of work in level. Briefly, given
the similarities with networks, techniques can be borrowed
from currently known network algorithms but need to be
adapted, this trend is promoted by Hoenisch and Weber [48],
for routing, a crucial functionality within the Network Manage-
ment Level in our classification. On the other hand, this trend
contrasts with the technicalities of the off-chain channel and
network levels. Our taxonomy decouples these different issues,
and we further discuss them in Sections III (channels), IV
(networks) and V (management).

As expected the off-chain channels body of work, i.e., de-
scribed in Section III, presents a greater number of works, in
comparison, for example to the Network level, i.e., described
in Section IV, which is understandable given that, as described
later, most of the protocols in Section IV derive from a



single technique to realize conditional payments, the Hash
Time Locked Contracts (HTLC) technique introduced by the
LN [30]. An example is Sprites [49] which employs a derived
technique but with smart-contracts.

On the other hand, the amount of work on off-chain channels
is comparable to that of the Network Management level,
because, as later will be illustrated by Table I and described
in Section V, of the significant amount of effort put on the
functionality of routing among the nodes of the network by
researchers and developers. However, even in this level, there
are discrepancies on the attention given by the community, as
the single work on re-balancing the network, i.e., the REVIVE
protocol [50], shows. Even though this is crucial to avoid the
bottleneck on the capacity of the routes.

Security and privacy preserving constructions. In order
to illustrate the type of problems between the levels, we
observe that privacy and security permeates the layers, and
some problems are well known in the literature. For example,
exchange of funds, in off-chain channels, need to be consistent
with the payments, i.e., they cannot allow for one player to
steal the coins from the other, that is they should provide
balance security, property common to all safe channel con-
structions. Similar concerns exist for payment networks, but
extended to the intermediate nodes, i.e., the nodes that allow
the connection between two other nodes with not common
channel. Furthermore, PCN should prevent information to be
leaked to intermediate nodes. Finally, network management
systems should provide safe, in the sense of both balance and
information is not leaked, routes for payers and payees as in
Table 1.

II. A TAXONOMY FOR LAYER-2

Here we propose a taxonomy for the existing protocols in
Layer-2. We start by presenting an overview of our approach
and justification for our choices. Later we present our classi-
fication illustrated by Table 1.

A. Overview

We organize the different sets of protocols in three levels '.
Each level embraces functions it performs. In other words, we
further subdivide the level into “functions”. The intuition is
that a protocol deployed on Layer-2, is expected to fulfill a

certain function within a level.

In order to illustrate and justify this design, take for example
the most popular Layer-2 PCN technique: HTLC [30]. Briefly,
for the sake of example, HTLC allows LN nodes to establish
connection between themselves in order to transfer funds. A
major challenge in this setting is to find a suitable route among
the nodes, thus the function required is Routing. A routing
protocol for the LN fits into the “Routing” function within the
“Network Management” level. Later, Table I summarizes our

'We justify the choice of the term “level”, instead of the more natural
“layer” as an alternative to avoid ambiguity with the terms Layer-0, Layer-1
and Layer-2 which permeate this work.

taxonomy and the levels we identify in the literature. However,
first, consider the following levels:

« Off-chain Channels: Here are the constructions for the
channels themselves. In order words, how the nodes,
relying on the transaction design of a cryptocurrency, can
construct channels. These are the building blocks of the
upper families.

« Network: Here are the techniques employed to create the
networks themselves. Typically by concatenating existing
pairwise channels, or establishing a network of more than
two nodes right from start.

« Network Management: This the early mentioned family
which embraces the protocols and algorithms that main-
tain the channels and network of channels. Typically they
are responsible for keeping them “alive” and usable.

B. Functions on Each Level

Given the earlier identified levels, here we further break them
down into functions.

a) Off-Chain Channels: The terminology in the literature is,
in fact, not standard. However it is possible to observe two big
functions (1) make payments and (2) keeping state. The first is
simplest, it does not need to keep a state. Whereas the second
is more general and requires the aid of smart contracts. We
further review (1) the three existing types: Duplex, Simplex,
and Probabilistic.

b) Network: In order to establish PCN, special techniques
are required whilst it is also necessary to carry the payments
themselves. Clearly, this level depends on the capabilities of
the channels. Some off-chain channels do not support network
construction capabilities. We further discuss this topic on
Section IV.

c) Network Management: Over the network of channel several
functionalities are required. We identified the following main
ones in the existing literature:

« Routing: The payments can be carried over several
nodes performing a protocol accordingly, however it is
necessary to select a set of nodes.

« Re-Balancing: A difference from regular computer net-
works is that each pairwise channel has a capacity which
may exhaust during the course the transactions exchange,
and therefore it needs to be rebalanced.

« Stability: Another difference from the regular computer
network, is that some constructions require to the nodes
to be online in order to perform in the dispute phase of
the protocols. Therefore there are protocols that mitigate
or solve this requirement.

« Anonymity/Privacy: Information of nodes within a net-
work, can be leaked as well as information about the
performed transactions. Typically, the nodes in the middle
of the channel can see the flow of funds. An alternative
is to provide cryptographic machinery over the channels.

A major difficulty on gathering the information on protocols
for Layer-2 is that, in contrast to scientific community litera-
ture, several protocols had been proposed in forums and inter-
net repositories, and not in conference proceedings or journals.



Level Function Protocols
Silent Whispers [51]
Routing Speedy Murmur [52]
Section V-B1 Spider Routing [53]
Flare Routing [54]
Splitting Payments [55]
MI;I;;work Hoenisch and Weber [48]
gement . .
Section V Atomic Multi-path [56]
Re-Balancing
Channels REVIVE [50]
Section V-B2
Channel
Stability Ava.rirl?igg 5 Zl] [58]
Section V-B3 ’
Anonymity/ Fulgor & Rayo [59]
Privacy Tumblebit [60]
Section V-B4
HTLC [30]
. Sprites [49]
Network geocrtlit);uit‘lfg State Assertion [61]
Section IV Virtual Channels [62]
Counterfactual [63]
Z-Channel [64]
State
. Perun [62]
Section III-C4 NoCUST [65]
Raiden [66]
Lightning [30]
Duplex Decker et. al. [29]
. Payment BOLT [67]
Qfehain | Section I11-C3 Teechan [68]
Section IIT Burchert et al. [69]
ectio TumbleBit [60]
Simplex Simplex [70]
Payment Dimitrienko et al. [71]
Section III-C3 Takahashi et al. [72]
Prg;’;‘ﬁéﬁ:‘c Pass et. al. [40]
Section ITI-C3 Hu and Zhang [41]

TABLE I: The channels stack and concrete protocols.

A unified compilation of issues and open problems is also,
apparently, non existent. We address this with our suggested
classification in Table I, which illustrates the protocol stack
for Layer-2.

Multiparty computation. The reader should note that our def-
inition of channel does not cover, for example, general secure
multiparty computation protocols, where several users interact
off-chain and provide correctness proof of the computation.
Here, we are interested in protocols that realize a channel
between two nodes or PCN, possibly through concatenation of
channels, for purposes of transferring value. In other words,
we leave out of our classification protocols with multiuser
distribution of funds, as used in [73-76].

Network construction technique. The reader should note
that Table I arranges LN [30] and Decker et. al. [29] in
the Off-chain Channels Level, not in the Network Level, and
this can be considered unusual, given that LN, in particular,
is associated with PCN, and not the channel construction.
We highlight that the construction technique used in both
cases is the HTLC, therefore a more accurate setting is to
locate the technique in the Network level instead. Moreover,
this arrangement is consistent with the literature as in [77].
Similarly, we acknowledge that both [62] and [63] could be

classified in the Off-chain channel, however these works seem
to present a more “built in” machinery for networks therefore
we classify them this way.

In the next section we detail each level from Table I, and cite
concrete protocols that address the described functions.

III. OFF-CHAIN CHANNEL LEVEL

Before reviewing the constructions for off-chain channels, it
is convenient to review the structure of transactions and how
they can be issued on typical cryptocurrency. That clarifies for
the reader how channels can be established.

A. Preliminaries: Transaction Design Review

Payments done on a blockchain are recorded in the form of
transactions, as in Figure 1. Each transaction consists of n
inputs and m outputs, n € N, m € Ny. Each output consists
of coins as well as a spending requirement. A plain payment
would have as requirement a signature with the private key of
the payee. Inputs on the other hand consist of a reference to an
output of a previous transaction on the blockchain (which was
not referenced by another input before) as well as a witness
for the spending requirement, e.g., a witness is a signature
with the private key of the payee.

Spending requirements can be more complex than simply ask-
ing for the payee’s signature. A relevant spending requirement
for us is the k-out-of-/ threshold signatures which are used
in Bitcoin with the opcode CHECKMULTISIG within its
scripting language. A witness to such a requirement need to
contain signatures of k out of [ specified parties. In our case we
will use these spending requirements with k = [ = 2. Further
generalization was introduced in the Ethereum by introducing
a full Turing complete programming language. This innovation
gave rise to the first practical smart-contract platform. In a
nutshell, smart-contracts have addresses with accounts and
variables, which are triggered by receiving transactions.

A transaction can specify a timelock to enforce that miner
will not include a transaction before a specified point in time.
Timelocks can either be defined per input or for a whole
transaction. Moreover timelocks can specify an absolute time
or a point in time relative to when the referenced inputs were
included in the blockchain. In Bitcoin an absolute timelock for
a whole transaction can be specified with the field nTimelock,
a relative timelock can be defined for each input using the field
nSequence [78]>. Lastly, in the following we denote A as
the maximum time required for a transaction to be committed
by a party and subsequently be included in the blockchain,
which is critical in the Dispute phase of the channel (outlined
in SectionlII-C1).

2Early protocols make use of a sequence number as a method of transaction
replacement, a variant idea can be found in Eltoo protocol [79], where miners
are supposed to include transactions with higher sequence numbers. However,
the respective field in Bitcoin has been re-purposed to work as a relative
timelock.



4 Transaction Tx )
Timelock
Input 1:
X BTC from Alice Output 1:
(Witness) X+YBTC
2-out-of-2 Si
Input 2: N
Y BTC from Bob Alice & Bob
(Witness)
Output m:
Input n:
Z BTC from Charlie WBTC
(Witness) Signature:
\_ Alice _J

Fig. 1: A simplified illustration of a transaction, with n inputs
(left side) and m outputs (right side).

B. Technical Challenges

As already emphasized earlier, the main goal of the channel
is to increase the number of transactions while rendering
the minimal number of interactions with the blockchain, i.e.,
committed transactions.

As we will see later, in Section III-C1, most of the time the
interaction, in a pairwise channel, happens only between the
players in the channel. Therefore, the players need to keep the
balance through all the transactions performed in the channel,
in other words the protocol should offer balance security.

As we see next, very often, in order to have balance security,
the nodes need to be online, in order to take action in the case
the partner in the channel, misbehaves. In terms of privacy, a
payment hub, i.e., the node which controls several channels,
a payer could also prefer that its payments are untraceable.

C. Channel Constructions

We start by a general description of a channel, then later we
review the simplest forms of channels: simplex and probabilis-
tic simplex. More complex forms are covered in the duplex and
state channels sections.

1) General Description: The terminology is fuzzy since both
terms, “payment” channel and “state” channel are used. Both
terms refer to the idea of relying on off-chain direct commu-
nication between two players, i.e., a channel. That is, initially,
both parties open the channel by committing a certain amount
of coins, which will be the channel capacity or the maximum
amount that is passed from one player to the other.

The state of the channel can be tracked by simple signed
transactions with or without the aid of smart-contracts, which
we conveniently chose to denote them, respectively, state
channels and payment channels. Although the choice may
appear arbitrary, we observe that, with smart-contract capabili-
ties, the term “state” seems more accurate given its generality.
The scalability naturally derives from the fact that the only
interaction with the blockchain is for opening, closing and
disputing the channel.

The simplest form of channel relies on instructions for time-
locks, e.g., the one described in BIP65 [80], and threshold

signatures® using the early mentioned CHECKMULTISIG
opcode. Typically channels have four phases:

o Setup: Two parties lock funds into the blockchain which
the sum of funds is the capacity of the channel. It is
important to note that the parties need to account for the
confirmation time of the chain to start the channel.

« Payment: This phase the parties can exchange funds
without interaction regardless of the confirmation time of
the system. During this phase the initially locked funds
cannot be used outside of the channel.

« Dispute: At any moment, a user can start a dispute in
the case the other party do not follow the protocol.

e Closing: When the two players decide to close the
channel, they publish transactions accordingly in the
blockchain. These transactions reflect the exchange of
funds that happened in the Payment Phase. Again, in this
phase the players need to rely on the confirmation time of
the blockchain. Furthermore, this phase can also trigger
the Dispute Phase, whenever the parties do not agree on
the current state.

2) Typical Channel: The current balance of the channel is
kept between the parties by exchanging directly mutually
signed transactions with the amount being passed from one
player to the other. When the channel is closed the last pair of
exchanged transaction are committed to the blockchain, which
makes the coins available for the players to redeem them. A
safety mechanism is in place by locally keeping the signed
transactions representing the new state of the channel. For
example, for a channel between A and B, with capacity C'4
and Cg, the coins committed, respectively, by A and B, after
a transaction with value § from A to B, therefore the new
state is C'4 — 8, for A’s balance and Cg + ¢ for B’s balance.
When a player does not correctly perform the protocol, e.g.,
by not confirming a payment, thus the protocol enters in
the dispute phase. During this phase, for [30], the partner
can publish its local kept (and mutually signed) transaction
claiming the coins of the channel. Alternatively, in Decker
and Wattenhofer [29], the channel is closed in the previous
state. The consistency of all signed transactions are assured
to be correct due to the use of timelock operation code in the
transaction verification script language [80]. In comparison,
smart-contracts offer more complex operations. A contract, by
design, can keep track of the balance and transactions made
into it. Therefore it can execute payments accordingly based
on previously set conditions. In particular, the execution of a
protocol can be triggered by presenting proofs of correctness
on secure multiparty protocols [73-75, 81, 82]. More formally,
given witness that a protocol was correctly performed, the
contract can be executed.

Next we detail the two functions payment and state in the
Off-chain Channel Level.

30ften denoted multisig by the Bitcoin community.



Funding Transaction Refund Transaction

Timelock & SeqNum;

Inputs: XBTC
X BTC from Alice (Sig)| 2-out-of-2 Signature:
Alice & Bob

Signature from
Alice & Bob

Output:
X BTC to Alice

(a) Setup
Funding Transaction Refund Transaction
Timelock & SeqNum2
Inputs: X BTC Output 1:
X BTC from Alice (Sig)| 2-out-of-2 Signature: i from X - § BTC to Alice

Alice & Bob Output 2:

5 BTC to Bob

Alice & Bob

(b) Payment

Funding Transaction Refund Transaction

Output 1:
Inputs: XBTC X - §BTC to Alice
X BTC from Alice (Sig)| 2-out-of-2 Signature:

Alice & Bob

Signature from

Alice & Bob
Output 2:

5 BTC to Bob

(c) Updated version of payment

Fig. 2: Figure 2a shows the initial state of a payment channel
upon setup. Figures 2b and 2c show payments. The former
makes use of sequence numbers and timelocks to replace
previous payments.

3) Payment Channels: Here we describe the main works on
payment channels, from simplex, and probabilistic, to duplex
constructions. Next, we review state channel works. Finally,
we present constructions for privacy preserving channels.

a) Simplex Payment: The earliest proposal of payment
channels that we could find was posted on the Bitcoin
Wikipedia [70] and is illustrated in Figure 2. Note that the
first proposal mentioned here makes use of a sequence number
to replace previous transactions, however, the respective, and
already cited, Bitcoin field, nSequence has been disabled on
20th August 2010 [70, 78] *.

Figure 2 illustrates a simplified form of the protocol in [70]
between two parties: The payer and payee, and they initiate
the Setup Phase. In order to do this the payer prepares two
transactions as depicted in Figure 2a. The first is the so called
Funding Transaction which takes as input funds from the
payer and spends them within one output that requires the
signatures of both payer and payee to spend. The second is the
Refund Transaction which spends the output of the Funding
Transaction and pays them back to the payer. Moreover the
transaction has the sequence number set to 0, and a timelock
in the near future by adjusting the value of nLocktime.
Then, without signing the transactions, the payer sends both
transactions to the payee who signs them and sends them
back. After verifying the payee’s signatures, the payer signs
both transactions itself and sends them back. Then, one of the
parties commits the Funding Transaction to the blockchain.

If the payer wants to pay a certain amount, it happens in
the Payment Phase, it creates a new version of the Refund
Transaction transaction that still spends the output of the

“https://github.com/bitcoin/bitcoin/commit/05454818dc7ed92f57 7alalef
6798049f17a52e7#diff-118fcbaabal 62bal7933c7893247df3aR522

funding transaction but instead of giving all funds back to
the payer, it contains an output that allocates some funds to
the payee as depicted in Figure 2b. Moreover, the sequence
number is set to a higher value to replace the previous
transaction. The payer signs this transaction and sends it to the
payee. This process can be repeated for subsequent payments
that all adjust the funds more and more in Payee’s favor and
increase the sequence number respectively.

Correctly keeping track of balances. The timelock and the
sequence numbers prevent the payer to double-spending the
funds. If the payer commits, by publishing it to the blockchain
its Refund Transaction, created at Setup Phase, which gives
all funds back to the payer, the payee could commit any
Refund Transaction with a higher sequence number to re-
place Alice’s committed transaction. However, the payee needs
to commit his Refund Transaction before expiration of the
timelock on payer’s Refund Transaction. Since then the
protocol has been adjusted on the Bitcoin-development mailing
list [83] and the Bitcoin Wikipedia entry—([70].

In 2013 this protocol was updated, as illustrated in Figure
2c. This update removes the use of the sequence number.
Moreover the timelock in the initial Refund Transaction is
kept, however, updated Refund Transactions do not contain a
timelock. Note that the payer only ever sees the initial Refund
Transaction fully signed and therefore cannot commit any
Refund Transaction without a timelock to the blockchain.
As long as the payee commits its latest version of the Refund
Transaction, such that it is included in the blockchain before
expiration of the timelock on payer’s Refund Transaction, he
is assured to receive his funds.

Note that this construction is a simplex payment channel only,
i.e., only the payer can do payments to the payee, but not the
other way around. To illustrate this assume the payee sends
a payment to the payer, by having the Refund Transaction
allocate more funds to the payer than to itself, compared to
a previous Refund Transaction. Then payee can commit any
transaction that allocates more funds to him resulting in a loss
of funds for the payer.

b) Probabilistic Simplex: Pass et. al. [40] propose a proba-
bilistic payment system in their work to reduce the number
of transactions on the blockchain and subsequently reduce the
amount of transaction fees enabling micropayments. Moreover
their solution provides near-instantaneous payments without
requiring confirmation delays. As such it is concurrent work to
the LN [30]. Their work is based on the work of Wheeler [84],
Rivest [85] as well as subsequent work in [86, 87]. [40] pro-
poses three protocols. The first is a naive, therefore vulnerable,
construction for two parties. The second and third protocols
are similar, with both relying on verifiable third party with
difference that third protocol is optimistic and utilizes the
verifiable third party in case of a dispute.

In these protocols the payer sets up an escrow address and put
an amount a of coins into it. After the payment is performed



the payer can potentially use the same escrow to pay another
merchant after some time has passed. Moreover the payer
sets up a second escrow in parallel such that in case of
misbehavior the payment will be burnt by the verifiable third
party. However, this approach has a couple of drawbacks, for
example, feasibility. The user needs to pay into two escrow
addresses, one for paying a merchant and one for punishment
in case of misbehavior. The amount paid into the punishment
escrow address should be significantly larger than the one paid
into the escrow address for payment. The payer can only pay
a fraction of the coins they possess at any time since a large
amount of coins is locked in the punishment escrow address.

These protocols might be less feasible for small merchants
or individual users who only occasionally execute payments.
Another issue is that misbehaviour of the verifiable third party
can only be observed but the party cannot be punished in any
way. The verifiable third party can collude with the merchant
to burn the payer’s punishment money or it could collude with
the user to withhold payment to the merchant. This would
result in a loss of trust of the third party, however, there would
not be any other drawbacks. It is important to note, that this
work was improved by Hu and Zhang [41] using a time-locked
deposit.

c) Duplex Payment: In a duplex payment channel both parties
can allocate funds into their mutually shared channel and these
funds can be redistributed between both parties arbitrarily. The
challenge for the construction is to ensure balance security
for all honest parties, i.e., any honest party cannot lose funds
in the presence of a malicious adversary and independent
of the behavior of its counter-party. Both the constructions
for duplex channels proposed by Decker et al. [29] and the
LN [30] extend the idea of simplex payment channel®. That
is, first, parties create a funding transactions in which both
parties allocate their funds by paying coins into it. Moreover
the funding transaction contains one output which requires
signatures of both parties to spend. Second, the parties create
a refund transaction which spends the funding transaction and
has two outputs which pays back the coins to their respective
parties. Note that each party needs to hold off signing the
funding transaction until it holds a fully signed refund trans-
action since, otherwise, the other party might hold the funds in
the funding transaction as hostage by committing the funding
transaction and refusing to sign the refund transaction. After
signing the refund transaction both parties sign the funding
transaction and commit it to the blockchain to lock their funds
into the channel, for the setup phase of the channel.

If the parties want to execute a payment, they create a new
refund transaction and exchange signatures for it. The payment
is considered executed when both parties hold the new fully
signed refund transaction and invalidate all previous refund
transactions. If both parties cooperate for channel closure the
parties sign and commit a closing transaction that spends the

5A comparison can be found in [88].

funding transaction and pays each party the amount of coins
that are denoted in the most recent refund transaction.

Dispute Phase differences. The way previous refund transac-
tions are invalidated differs in [29] and [30]. While in [29], the
dispute is solved using timelocks, to enforce the most recent
mutually agreed status, in [30] it is done by punishing the
party by giving all channel coins to the honest party. Briefly,
the former structures channels within a, so-called, invalidation
tree. The funding transaction represents the tree’s root and
refund transactions are the leaves of the tree. Each payment
adds a node in form of a transaction into the tree. There are
two methods that enforce that only one path in the tree, and
therefore only one refund transaction, is valid. For one, each
node in the tree has a relative timelock to its parent. A node in
the tree can invalidate all of its siblings by setting its timelock
to be A less than the minimal timelock on all of its siblings.

Note that refund transactions are always set to the highest
locktime possible as agreed by both parties. The other method
is to extend the tree’s depth by replacing a refund transaction
by timelock with an intermediate node that spends the previous
node’s output. This transaction has exactly one output that
requires both party’s signatures to be spend as a funding
transaction. Then the new set of refund transactions spends
this intermediate node. The maximum depth of the tree can
be agreed upon before channel creation by both parties. The
maximum width of the tree depends on the maximum agreed
upon timelock since a replacing transaction needs to have a
timelock that is at least A smaller then all of its siblings. In
case of a dispute each party can commit the most recent path
of the invalidation tree onto the blockchain to enforce the most
recent refund transaction.

Punishing players. LN approaches invalidation of previous
refund transactions by punishing the party that committed an
invalid transaction by giving all their coins within the channel
to the respective other party. Simplified, this is done as follows.
Let Alice and Bob share a channel. First, to be able to punish
a party we need to identify which party attempted to commit
a possibly invalid transaction. This is done by having each
party hold a version of the refund transaction that contains
information that uniquely identifies them. So, when Alice
and Bob want to execute a payment each of them creates a
version of the new transaction that identifies the other party
respectively, signs it and sends it to the other party. Then Alice
holds the new refund transaction created by Bob that identifies
herself, with Bobs signature and Bob holds the transaction of
Alice. If Alice, or Bob, wants to submit the refund transaction
they have to sign the transaction they hold, which was created
by the other party, and commit it to the blockchain. They will
not be able to commit the transaction created by themselves
and would identify the other party since the other party does
not return a signature for their transaction. By doing this we
can identify the claiming party.

Next we need to add a method to punish a party in case they
submit an invalid refund transaction. This is done by making



the funds of the party that commits the transaction redeemable
with two different conditions. In the following assume that
Alice is the party that committed the refund transaction. First,
in the case Alice is honest the funds are redeemable after a set
time has expired using a timelock and with Alice’s signature.
The timelock is used to give Bob a timeframe in which to
claim the output in case of Alice’s wrongdoing. The second
condition is redeemable with Bob’s signature as well as a
signature with a private key that Alice created for invalidating
the refund transaction. Now to invalidate a refund transaction
both parties exchange their respective invalidation keys after
creating and exchanging the new payment transactions.

In [29] the amount of possible payments is limited by the
maximum depth and timelock used for the invalidation tree,
however, it has lower memory requirements compared to the
LN since parties do only need to store the currently valid path
of the invalidation tree. In contrast nodes in the LN need to
store a set of keys linear to the number of payments executed
in the payment channel. Moreover, for the construction of
Decker et al., the number of transactions that need to be
committed onto the blockchain in case of a dispute depends
on the maximum depth of the invalidation tree, whereas the
number of transactions committed in LN is constant. However,
a limitation is that for both constructions nodes need to be
online during the dispute, in order to enforce commitment of
the currently valid path in the invalidation tree or punishment
transaction, respectively.

Hardware based approaches. Alternatives which relies on
secure hardware, i.e., trusted execution environments (TEE),
exist. Teechan is a protocol introduced by Lind et al. [68]
which introduces full duplex payment channel framework
between two mutually distrusting parties, assuming that they
are equipped with TEEs. In their implementation on the
Bitcoin network, they utilizes Intel’s Software Guard Ex-
tensions (SGX), which provides secure region of memory,
i.e., a enclave. By making only specific SGX instructions
able to execute a code or access to a data in an enclave,
confidentiality and integrity for the enclave code and data are
guaranteed. Moreover SGX supports remote attestation which
enables an enclave to acquire a proof that it is executing a
particular enclave code. Both private keys of the two parties
interacting in Teechan are securely shared by their TEEs. In
execution, only each TEE generates every transaction, encrypts
it and then gives it to the party. Therefore each party is only
responsible to the setup, payment or close requests for its TEE,
and forwards them to the counterpart. Lind et al. [68] measured
10 million transactions to be exchanged in optimal network
conditions,i.e., network bandwidth and latency, and observed
that the protocol achieves 2,480 TPS on average.

A similar work to [68] is given by Takahashi and Otsuka [72]
which improves the work of Dmitrienko et al. [71] by selecting
a different technique to validate the funds of a hardware secure
wallet. Both [71] and [72] relies on loading funds in advance
into the wallet. However, whereas in [71] the payer wallet

verifies the pre-loaded funds, in [72], the payee performs the
verification. In [72], differently from [68], it is not needed the
signature of both sides of the channel, i.e., 2-out-of-2 signature
between payer and payee.

Channel factories. The general framework for channels,
as described in Section III-C1, imposes restrictions on the
creation of channels. Namely, the confirmation time for the
Setup Phase may still be unacceptable for micropayments,
without in advance funding transaction. Furthermore, upon
channel creation the funds are locked for only that channel.
The relaxation in these requirements is the motivation for the
creation of channel factories proposed by Burchert et al. [69].

The core idea is to introduce a layer between the blockchain
and the payments. This translates into a step where a group
of collaborators jointly fund a factory. This first step, still
requires blockchain interaction, therefore still is subject to
the limitations of the consensus algorithm. However any new
pairwise channel can be created, among the initial users, from
this point, upon communication between the collaborators,
hence creating channels. Although the factory creation still
requires time and funds locking into the blockchain, the
advantage of this design is that it allows reallocation of funds
between the pairwise channels.

Embedding script into signature. An interesting idea to
preserve space in the blockchains, which is the case for
major cryptocurrencies, is to embed more instructions into the
signature issuing procedure by relying on a more sophisticated,
i.e., one that offers more properties, signature scheme. That is
the approach introduced by Poelstra [89, 90] denoted scriptless
script for the Schnorr signatures and LN, which was recently
extended by Malavolta et al. [91] to the more suitable, for
cryptocurrencies, ECDSA signature scheme.

Briefly, [89] outlines an approach which relies in the Schnorr
signature scheme in order to embed the value of the pre-image
x, i.e., for the HTLC hash challenge, into the signature com-
putation algorithm, jointly carried by the payer and the payee
of the channel. Although the formalization effort displayed
in [91], the authors point out it is not the case for other
proposals. Furthermore, main cryptocurrencies, e.g., Bitcoin
and Ethereum, may not be compatible to the Schnorr scheme.

Privacy preserving channels. An anonymity focused ap-
proach has been proposed by Green et. al. [67], named BOLT.
It assumes anonymity of the underlying blockchain, i.e., either
use an anonymous blockchain as Zcash [92] or means to
anonymize it, e.g., by using a mixer. Then, assuming that one
of the parties is well known, e.g., it is a merchant, it provides
additional anonymity guarantees for the respectively other
party, e.g., a customer. The merchant knows that they received
a payment, however, does not know by which customer the
payment has been done.

Their duplex payment channel proposal extends the Compact
Ecash protoool by Camenisch et al. [93] which is based on
the work by Chaum [94]. However their construction does



not consider a definition of balance security when a malicious
customer stop cooperating with the merchant after doing a
couple of payments ®. As the customer is required to start
channel closure the merchant, i.e., one of the participants
of the channel, cannot close it arbitrarily, therefore it can-
not claim the funds payed to him. More recently Zhang et
al. [64] introduced Z-Channel, which provides anonymity for
micropayments adapting the ZeroCash. However it is uncertain
if [64] is suitable for payment networks. Similarly BOLT
(Blind Off-chain Lightweight Transaction) [67] tackles the
linkability problem in channels, however [67] does not seem
to provide a construction over ZeroCash [95].

Another protocol that minimizes the payer information leakage
is TumbleBit [60], which presents an unidirectional unlinkable
payment channel, where payer pay to payee via an untrusted
payment hub (called Tumbler) that plays a role of a mixer.
In TumbleBit, unlinkability is achieved for Tumbler itself.
Moreover, the protocol prevents a malicious users theft any
other user’s funds without any trust. It was also thought to be
one of the remarkable features that the protocol is compatible
to the Bitcoin protocol before SegWit is adopted, the most
recent update in the Bitcoin protocol.

As with the conventional micropayment channels, TumbleBit’s
users require a channel to be established in advance. Then
payer can send payments as much as they like within its
deposit. The protocol consists of the three phases: Escrow,
Payment and Cash-Out. It needs four on-chain transactions that
one pair of payer and payee opens a channel in the Escrow
Phase, communicates to transfer multiple unidirectional off-
chain payments in the Payment Phase and finally settles the
channel in the Cash-Out Phase.

When payer Alice transfers a payment to payee Bob, the
overview of the protocol is as follows. First, Alice deposits
to the Tumbler and the Tumbler does to Bob. The Tumbler
encrypts transactions as puzzles, by which Bob can claim
the deposit, and sends them to Bob. TumbleBit core is its
sub-protocol puzzle-solver protocol, where Alice receives the
solution to her single puzzle only if she transfers her single
payment to the Tumbler. In the Payment Phase, Alice receives
a single puzzle from Bob, engages in the puzzle-solver proto-
col together with the Tumbler and then get the solution to the
puzzle and back the solution to Bob. Note that Bob blinds the
puzzle before sending it to Alice, thus It makes sure that the
Tumbler cannot link Alice and Bob.

4) State Channels: Until now, in this work, the channels
are built based on special instructions for transactions, as
described in Section III-A. Smart contracts, as in Ethereum,
enable more complex offchain structures which has been inves-
tigated in [49, 62]7. A particular use for smart-contracts aims
to enforce fairness and correctness on distributed systems.

6 Although the authors acknowledge it by explicitly assuming the customer
follows the protocol.
TWe discuss [62] and [49] in more detail in Section IV.

The approach of relying in penalties to guarantee correctness
and fairness of computation, in particular, on secure multiparty
computation protocols, has been independently explored for
efficient protocols on the top of blockchain. For the general
case, this idea has been introduced by Andrychowics et
al. [96, 97], and later by Bentov and Kumaresan [98]. For
specific purposes, e.g., card-games, it was further explored
by Bentov et al. [73] and David et al. [74-76]. The main
difference from the first works and the specific purposes
protocols is the heavy use of smart-contracts. In particular,
to arbitrage disputes among the players of the protocol.

More specifically, smart contracts can be used to store the state
of the channel other than just the fund distribution between
two parties. Since it is implemented with a Turing complete
programming language, it can redistribute funds according
to arbitrary states upon closure of the channel. Compared
to the previously mentioned constructions state channel can
be implemented more straight forwardly. They are opened
by committing the respective smart contract onto the block
chain, whose state can be changed using a message signed
by both parties as well as a sequence number. Parties then
can change the state offchain by computing a message to the
smart contract that would make it transition into that state
including a sequence number and exchanged signatures for
this message but without committing the message onto the
blockchain. The smart contract can be closed by sending to
it the latest message in order to initiate the dispute or close
phase, in which one of the parties sends a message with higher
sequence number. After that, the smart contract transitions into
the state as specified by that message.

NoCUST [65] is another protocol which relies heavily on
smart-contracts. Here two parties wishing to exchange small
amounts create a channel by making their deposits into a
smart-contract, therefore two on-chain operations. All the
payments from that point on, are executed off-chain via a third
trusted node which intermediates the off-chain operations be-
tween the two participants, and each payment requires issuing
request payments and receipts. This design has the advantage,
in comparison to regular payment hub over off-chain channels,
of not requiring the hub node to allocate/lock a large amount
of funds, hence no custodian, while intermediating payments
between large group of pairs of nodes.

IV. NETWORK LEVEL

In this level the concern is how the payment network can be
established, in contrast to how it is managed (which is the
topic of Section V).

A. Technical Challenges

The main function of this level is the construction of a payment
route. More concretely, how the pairwise “inner” channels can
be concatenated and used to provide a medium for payments
between two nodes that are more than one hop apart. Within
this setting, it is important to keep, likewise Section III,
balance security, specially in the inner nodes. The technical



challenge is significantly bigger than in the early sections,
because in the network cases, other nodes in the route could
also collude against the honest player.

B. Construction Function

Pairwise payment channels can be concatenated in several
nodes to form a payment network which can enhance even
more the scalability of a system, because two nodes do not
necessarily contact each other to open a channel. Instead, they
can create a “virtual channel”, it the sense of Dziembowski et
al. [99] via a mutually connected node. The core technique in
these networks is the early cited HTLC [30].

This enhances the scalability of a system even more since
it removes the need to create new payment channels between
each pair of payer and payee. The concept of PCN and related
concepts had been previously studied: trust networks [100-
102], credit network [103], path-based transaction (PBT) [104]
and privacy in PCN [59]. The technique in [30] is currently
being used in the Bitcoin network and paved the way to new
propositions for different cryptocurrencies, as in the Raiden
Network [66] for the Ethereum [8].

HTLC and conditional transfers. Nodes can execute a pay-
ment atomically on a set of channels using HTLC. A payment
can be routed across a sequence of channels without payer
and payee having to create a channel between themselves that
would require committing transactions onto the blockchain.
Briefly, in [30], two nodes exchange funds by relying on a
middle node, say, B, and the two channels between A and B,
and B and C. Node A wants to send coins to C, and, as the
first step, C' computes a hash value on an arbitrarily chosen
random number z and shares it with A via a direct channel,
however without establishing a payment channel. The actual
transaction is carried by A sending the funds to B, using their
mutual channel with the extra condition that node B shows
the secret value x. Analogously, node B handles the funds do
C in a similar fashion, relying in their mutual channel.

Apart from LN based channels [30], several types of chan-
nel constructions, from Section III, support HTLC, e.g.,
Sprites [49]. They are: Raiden [66], Decker et. al. [29],
and Perun [62]. Given the importance of the HTLC and
applications on PCN, it is very surprising that apparently there
is still no formalization of it in the literature.

Mitigating Dispute Phase costs. In general the payment
network protocols are optimistic, i.e., they assume the nodes
will cooperate, therefore the dispute phase, as outline in
Section III-C1, is expected to be rarely triggered. However
this phase execution can be costly both in terms of time
complexity and financially given that the arbitrage can involve
the execution of smart-contract to compute penalties. The
Sprites Protocol [49] introduced by Miler et al. is designed for
Ethereum’s smart contracts, and has the goal of reducing of
the time complexity of resolving a dispute. Note that this work
is independently done in Raiden [66]. The main observation
of [49] is that in the dispute case for the multichannel route,

any of the internal pairwise channel will have to solve the
dispute in its own respective HTLC agreement, i.e., between
each of the two consecutive. Hence, [49] substitutes them for a
Ethereum smart-contract which solves the dispute. That differs
from the HTLC technique since there is no need to increment
the time on each hop of the payment route.

A recent idea introduced by Buckland and McCorry named
State Assertion Channels [61], analogously to [49], but for
computational costs. The goal of [61] is to guarantee that
during the Dispute Phase, which can also be triggered by
closing a channel, the honest party always can be paid back
regardless of the cost of performing the verification of the
full state of the application in the blockchain deployed smart
contract. What Sprites [49] does for the expiration time of
channels, the State Assertion technique does for the cost of
computation, which indeed can be expensive if done on chain.

The main setting for state assertion channels is to deploy two
smart contracts, the application (AC) and the assertion (SC)
ones, with the requirement that the latter has to receive the
funds before the creation of the channel itself. The states are
not disputed in the AC, but in SC which can pay back the
honest user whenever it challenge an invalid state transition
proposed by the cheater user. The crucial observation is that
SC verifies without the full state of the application, but,
instead, with a digest of it via hash values. The work in [61]
provides a simulation on this novel approach, and it is a first
step in the rigorous formalization of the idea.

Generalizing State Channels. There are approaches to con-
struct more general structures over offchain-channels. More
notably, we can find in the literature by Dziembowski et
al. [99] and Coleman et al. [63]. The work in [99] extends
their virtual state channel construction in [62] by enabling
virtual payment channels exceeding one intermediary party
by recursively applying their construction on top of state
channel as well as virtual state channel. The formal treatment
of “virtual channel” [62], which allows the creation of a
multi-hop state channel across a sequence of single-hop state
channels. This technique allows payer and payee to operate
on a shared state channel instead of having to setup a new
HTLC instance for each individual payment. More concretely,
consider parties Alice, Bob and Charles where Alice and
Charles, as well as Charles and Bob share a state channel
respectively.

For comparison, in [30] and [29], Alice and Bob can execute
payments between each other making use of the existing
infrastructure and without having to create a new payment
channel between Alice and Bob. However, this requires that
Charles participates at the payment protocols for each payment
between Alice and Bob. In contrast, virtual payment channels
allow the creation of a payment channel on the top of the
existing state channel, adding a layer of indirection and
enabling payments between Alice and Bob without Charles’
participation outside of virtual channel setup, closure and any
dispute. The protocol is proven in the UC framework [105],



and requires smart contract capabilities® and therefore it is
not applicable to cryptocurrencies with limited smart contracts
capabilities as Bitcoin.

In a sense, Coleman et al. [63] also aims to build a richer
structure on the top of the off-chain channels. They introduced
the notion of counterfactual, which is, in a nutshell, all the
events of the channel, which can, or cannot, be committed
to the blockchain. In this paradigm, a payment in the off-
chain channel, changes a so-called counterfactual state of the
system. In addition, it is also possible to create counterfactual
contracts via commitments and signatures, which generalizes
the channels even further. The work in [63] presents an
framework, focused on practical implementation.

The Wormbhole attack on PCNs. The attack introduced by
Malavolta et al. [91] affects all the PCN constructions based on
2-step interaction between the nodes, therefore HTLC based
PCNs are in general, vulnerable to it. The colluding nodes aim
capture the transaction fee which the inner nodes on a payment
route would expect to receive in order to carry the payments
in the network. Although the gravity of the attack, the authors
of [91] succeeded in proposing a fix for the main protocol and
even warned the LN team about the protocol weakness, which
triggered new developments. In particular the implementation
of the two party ECDSA construction from [91], and its later
incorporation into the system [106].

Briefly, the attack is carried by two colluding nodes within
the same payment route. The two nodes share the pre-image
value of the HTLC, while keeping the nodes in between them
oblivious to the payment condition value. Consequently, in the
point of view of the nodes in the extremities of the path, the
payment is carried out, while the nods in the middle of the
path see as it has failed. This condition allows the colluding
nodes to jointly receive the transactions fee from the nodes
which did not executed the payment.

V. NETWORK MANAGEMENT LEVEL

This is the upmost level in our classification, and, arguably,
this level offers a greater variety of technical issues in com-
parison to the other levels. Thus, before reviewing the existing
protocols, we described the known technical problems.

A. Technical Challenges

Here we assume that a network of channels is established,
and all the nodes have access to it. Therefore we identify the
following main functions:

1) Routing: Similarly to a regular computer network, in
order the find a payment path, it is necessary to probe the
network for nodes available to route the payments. On the
other hand, in the case of PCN, other variables can influence
the construction of such paths, in particular availability and
fees to intermediate the payments can heavily influence the

8A  proof-of-concept implemented for Ethereum is available at

https://github.com/PERUNnetwork/Perun.

routing. A close look into routing in the LN is given by Di
Stasi et al. [107] and McCorry et al. [77]. A more general
desiderata for routing over PCN is given by Hoenisch and
Weber [48] based on similarities between PCN and Mobile
Ad Hoc Networks (MANET).

2) Re-balancing route: Each pairwise channel has associated
with it a capacity, which is how much funds the channel
can handle. A PCN can concatenate several channels, i.e.,
different capacities, that need to harmoniously work together.
The consequence is that inner channels in a path have its
capacity exhausted forming bottlenecks in the whole route.

3) Stability of the route: The current techniques for channel
constructions very often rely on the assumption that the users
of the channel, and therefore of a PCN, will be online during
all the lifespan of the channel. This is crucial in the case a
Dispute Phase, as described in Section III-C1, when the parties
need to act timely. Failing to claim the correct state of the
channel in this phase, lead to the honest user to lose funds.

4) Privacy and anonymity: Intermediate nodes within a pay-
ment route, in principle, watch all the flow of transactions,
since they are intermediating all the payments. Moreover,
when enabling a payment path through, for example routing,
information may be leaked about the payer and the payee.

B. Constructions

For each of the technical challenges detailed earlier, we now
detail and discuss the existing approaches in the literature.

1) Routing: Here the challenges are similar to computer
networks, however there are important differences due to the
payment network nature. For one, routing should be scalable,
i.e., both the stored state per node as well as communication
complexity when routing should be logarithmic on the number
of nodes. Moreover, the amount of funds that can be routed
through a path depends on the capacity of the channel with
the lowest capacity on the path. Furthermore, nodes within
a path can be either controlled by a malicious adversary or
spontaneously go offline. Also the network should be able
to handle multiple concurrent routing attempts and payments.
However, on a different note, since individual transaction are
not recorded on the blockchain payments through an offchain
channel network can provide better privacy and anonymity
guarantees compared to the underlying blockchain if done
right. In addition to all these challenges intermediate routes
that participate in forwarding a payment can ask for a fee
and therefore nodes need to consider this and might want to
optimize for a reduction of payment fees. Nevertheless, we
note that as a fallback nodes can always create a new payment
channel between payer and payee, however, this counteracts
the scalability efforts of offchain payment networks so most
approaches attempt to accomplish routing without relying on
the fallback method.

We would like to note that the above stated challenges are
similar to those in wireless sensor networks. There nodes



often have limited resources in form of limited battery which
results in communication being expensive. As a consequence
communication over long routes is a burden on the whole
networks similar to long payments allocating a lot of collateral
which [49] defines as the total amount of funds allocated
in a HTLC across a payment path. Communication overhead
needs to stay scalable to avoid nodes running out of battery.
Moreover, nodes in wireless sensor networks have limited
storage such that the state stored per node needs to be scalable
as well. Since the deployment of nodes in wireless sensor
networks can be non-structured nodes need to setup networks
among themselves and moreover might need to adjust their
routing tables often due to changes in the environment as
well as nodes that run out of battery and go offline. However,
privacy requirements are different in wireless sensor networks
compared to offchain channel networks as the receiver of
messages is often a designated sink such that most related
work focus on sender anonymity only.

Approaches for routing. A common limitation for long
payment channels is that the intermediate nodes need to be
online during the transaction period. Therefore, often routing
algorithms rely on landmark routing techniques [108], where
a landmark, i.e., a node with extra guarantees regarding its
connectivity. This node is used as the middle node in the path.

Briefly, there are two ways to approach routing in these
networks. One is landmark routing where all nodes know
the route to a set of landmarks. In such a protocol pay-
ments are, first, routed from the payer to a landmark and,
second, routed from the landmark to the payee. This approach
promotes centralization of payment channel networks. Nodes
close to a landmark would have the advantage of being better
connected and might need to pay less fees for routing as
well as have a better routing success rate. They also might
get more income through fees because payments would more
often be routed through them compared to nodes far off from
landmarks. Another approach is routing using embeddings. In
this approach nodes among themselves decide on an address
space of the network and, then they can find routes using
these addresses. This approach enables more decentralization
however it requires more communication for maintaining
routing tables.

SilentWhispers Protocol [51] proposes using landmark routing,
where all landmarks are publicly known and semi-honest.
All routing is done through these landmarks by computing
the shortest routes. This is done in epochs such that node’s
routing tables can update to changes within the network. The
work [51] also defines privacy notions for credit networks
and provides security proofs of their construction in the UC
framework. The work also proposes multiple extensions. One
of these allows for malicious landmarks whereas the other
extension proposes routing through nodes that are offline. In
the latter case nodes create secret shares of their long-term
private keys and distribute those across the landmarks who can
then impersonate offline parties, however, this requires that at

least one landmark is honest and does not try to reconstruct
long-term private keys of which it holds secret shares.

Similarly, the SpeedyMurmurs routing protocol [52] an em-
bedding based routing protocol, for path-based transaction
networks based on the work in [109]. In [52] some nodes
are designated landmarks. Using these landmarks as roots of
respective spanning trees are computed to create an address
space within the network. A route can be computed using a
distance function on nodes’ addresses to find the next hop on
route to the target. In comparison, LN/HTLC [30] relies on a
gossip protocol for channel maintenance and recovery ° and
onion style routing for privacy '°. However it is not clear how
nodes can find routes in the network. An attempt to address
this issue is the routing proposal algorithm for LN: Flare [54].

The protocol in [54] is a probabilistic, and proceeds in two
ways: (1) each node stores the topology of its neighborhood,
(2) each node chooses a set of beacon nodes globally and at
random according to a uniform distribution. Routing between
two nodes is done by first checking both peers neighborhoods
for intersections, and if this does not work checking whether a
beacon node is within the other peers neighborhood. The nodes
continue by using the neighborhoods of a few beacon nodes
when searching for mutually known nodes to route through.

The author’s of [51] evaluate their work using Ripple’s [110]
payment network topology from 2013 and 2016 [111]. They
compare success ratio, path length of payments and mes-
sage complexity between their approach, a protocol based on
the Ford-Fulkerson max-flow algorithm [112], SilentWhispers
[51] among others. They show a better success ratio as well as
smaller paths in average compared to SilentWhispers, however,
a lower success ratio than the Ford-Fulkerson based protocol
which had an unfeasible message complexity.

Hoenisch and Weber [48] pioneered the adaption of tech-
niques from Mobile Ad Hoc Network (MANET). In [48] they
compile a list of requirements and also argue that techniques
from MANET, like the one they rely on for their protocol,
which is named On-Demand Distance Vector (AODV), are
more suitable to dealing with the issues of payment channel
networks. An interesting feature of their adapted protocol is
that it takes into account the balance and fees of intermediate
nodes, a feature not present in MANET but which is highly
relevant in payment networks, given that these values can
change arbitrarily and without coordination.

Splitting payments. Moreover payments can be split-up
into multiple smaller payments and routed through multiple
routes [56]. It is important to highlight that [56] also considers
privacy as well as sender/receiver anonymity. Routing success
does not only rely on whether a route can be found or not, but
also whether the route has enough capacity for the payment

9 A description can be found in https://github.com/lightningnetwork/lightning-
rfc/blob/master/07-routing-gossip.md

10A description can be found in https://github.com/lightningnetwork/lightning-
rfc/blob/master/04-onion-routing.md



to be executed through it. Large payments have low routing
success rates '!. Approaches to tackle this issue attempt to split
payments through multiple routes as AMP [56] that provides
a protocol to split a payment across multiple paths, similarly
to the Split Payment Protocol [55], however [55] allows for
payments to complete only partially. Another approach is
the Spider Network [53] which employs packet-based routing
including congestion control to do payments through multiple
paths. Each payment is split-up into smaller packets which
can be routed through separate routes and claimed atomically
by the sender as proposed in [56] or non-atomically. Nodes
involved in routing payments can employ congestion control
techniques when multiple payments are routed concurrently.
Channel capacities and possible imbalances are considered
when selecting paths for packages.

The work in [53] compares the success ratio of routing using
an approach based on [112] as well as SpeedyMurmurs [52]
and SilentWhispers [51]. They evaluated these approaches
using, for one, network topologies existing in the Internet as
found in [113] as well as Ripple’s [110] payment network
topology from 2013 [111] which has also been used for the
work on SpeedyMurmurs [52]. The evaluation shows that the
approach proposed in this paper works better on the former
topologies than the latter ones where they are outperformed
by the algorithm from [112]. Noteworthy is that they report
significantly lower success ratios for SpeedyMurmur than have
been reported in their paper [52]. Moreover, Speedy Murmurs
does not consider privacy notions or malicious adversaries.

2) Channel Re-balancing: Given the limited capacity of a
channel, it may be necessary to rebalance a set of payment
channel to avoid that the channel turns into a simplex one
because of missing capacity on one side. For instance, let
Alice and Charlie, Charlie and Bob as well as Charlie and
Alice share a payment channel respectively. Moreover assume
that initially everyone has one coin allocated as their funds
for each channel. Now, if Alice sends one coin to Bob, Bob
sends one coin to Charlie and Charlie sends one coin to Alice,
all within their respective channels then we would end up in
a situation where in each channel one party has two coins
and the other has no coin. In this case we would not be able
to repeat this payment without routing the payments over an
intermediate node even though the total funds of all nodes
remain unchanged. To remove this skewness in funds the
REVIVE protocol [50] relies on an untrusted third party that
creates a block of transactions rebalancing funds. Each peer
will lose money on one or more payment channels but gain
an equal amount on others. After each peer verifies this on the
rebalancing transactions they can apply the changes off-chain.
3) Channel Stability: The channel between two nodes assume
that both stay online on the duration of the channel. Any
misbehaviour of any node, can trigger the response and
respective claim of the partner node, which have to be online

Reported in https:/diar.co/volume-2-issue-25/ and https://thenextweb.com
/hardfork/2018/06/26/lighting-network-transactions/

in order to perform the dispute phase of the network protocol.
An approach to address this is to assume that the receiver can
assign a custodian node, sometimes also referred as watch-
tower [58, 114], to watch over their payment channel while
they are offline. Similarly, this is the idea of the PISA [57].
The custodian can dispute malicious commitments of the other
peer while its customer is offline. The custodian gets a fee for
the service and has a deposit that gets destroyed when it fails
to make a dispute on behalf of its customer. However, the
custodian’s customer are not public and the custodian can use
the same deposit as a safety for all customers. This leads to the
problem that if there are enough customers the custodian can
possibly get more funds by cheating on its customers than
it would lose by having its deposit destroyed. Moreover, if
the deposit is not destroyed and instead is payed out to all
customers a malicious custodian can create customers for itself
to mitigate the funds lost.

4) Privacy and Anonymity: The network management layer
may leak crucial pieces of information from nodes belonging
to a route to the origin node of a payment. Malavolta et
al. [59] investigate privacy notions on PCN and how to enforce
them, and propose routing protocols Fulgor and Rayo [59] that
considers concurrent routing processes and attempt to avoid
deadlocks in a sense that at least one payment completes. Un-
fortunately their privacy notions rely on assumptions that the
underlying routing protocol does not store the state (capacity)
of payment channels within the network, which if done could
be used to circumvent their attempts for privacy.

Security on routing. Flare [54] requires inquiring the capacity
of channels routed through and therefore cannot be used for
finding routes with their work to uphold privacy, however the
authors specifically state Flare routing as an option to use
with their work. Moreover, they require a way of ordering of
transactions for their protocols to prioritize which payments to
execute when resolving deadlocks. However, finding such an
ordering in a way that does not enable abuse is not trivial. The
authors suggest the possibility of using the transactions hash,
however, this could be manipulated by a malicious adversary
by slightly altering the payment to get a hash that results
in a higher priority for their payment when going through
the network. Their constructions is proven secure in the UC
framework [105], however, their proof for two users who
sharing a payment channel of agreeing on the state of the
channel only works in the semi-honest adversary setting.

Fees and node reputation. Since each node in the network
can charge an arbitrary fee in order to conduct the payment
along the path, an interesting question to investigate is the
game-theory behavior of rational nodes within the network
and other economic questions. In comparison to other works,
as seen in previous transactions, these questions seem to
be, to this day, largely understudied. A framework to study
network topologies and economic aspects is given by Branzei
et al. [115]. Similarly, a reputation system, which would take
account of fees and success payment rate, seems to be missing
in the literature and are highly relevant for practical systems.



VI. FINAL REMARKS

We provided a major review, as shown in Table I, of the body
of work on PCNs and related protocols for Layer-2 solutions,
an emerging area targeting scalability of cryptocurrencies.
We believe it provides a significant value for the community
because it contains a wide overview of the landscape on the
ideas and approaches present in the scientific literature and
Internet repository and forums.

We highlight the rich work on routing protocols, for Network
Management Level, in comparison to attention given to, for
example, assure that the channels are properly balanced, i.e.,
Re-Balancing. That can be explained by the similarities of
PCN and computer networks, which can be seen as a source
of already testes ideas to find routes. Similarly to state channel
research, within the Off-Chain Level in Table 1.

More recently, we can also note a trend on network con-
struction protocols for the Network Level, in particular the
works on Virtual Channels [62] and Counterfactual [63]. In
both cases, they distinguish themselves by increasing the
complexity of the constructions on the top of the off-chain
channels. Surprisingly, the more extablished technique, i.e.,
HTLC, does not seem to have a formal treatment yet in the
literature, which can interest the research community.

Along the same lines, works on the economic aspects of the
channels, i.e., fees charged by nodes, and reputation of nodes
seem also to be under reported in the literature. In both cases,
they are important, because they are critical to pave the way of
more practical systems. Finally, it is important to emphasise
that this work left out the topic of interoperability of systems,
e.g., Cosmo [116], XClaim [117] and Comit [118].
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